
Elliptic Curve Pairings

EE 694 : Credit Seminar
by

Thakore Varun Pragnesh (213079002)

under the guidance of

Prof. Saravanan Vijayakumaran

Department of Electrical Engineering

Indian Institute of Technology, Bombay

Mumbai 400 076



1 Introduction

An elliptic curve pairing is a function that takes as input two points on an elliptic
curve and outputs an element of some multiplicative abelian group. A pairing satisfies
several properties, the most important of which is bilinearity. The bilinearity of pairings
enable many applications in cryptography, for example, three-party Diffie Hellman key
agreement where the bilinearity property of pairings is used to share a common key
between three users.

This report provides an overview on elliptic curve parings. It introduces Divisors
which are used to define the Weil and Tate pairings. It presents Miller’s Algorithm which
is used to compute pairings.

2 Divisors

Let K denote a field and K its algebraic closure. Let E be an elliptic curve defined
over field K. For each point P ∈ E(K), define a formal symbol [P ]. A divisor D on E
is a finite linear combination of such symbols with integer coefficients.

D =
∑
j

aj[Pj], aj ∈ Z

The degree and sum of a divisor is defined as

deg(D) =
∑
j

aj ∈ Z

sum(D) =
∑
j

ajPj ∈ E(K)

The support of a divisor D, denoted supp(D), is the set

supp(D) = {Pj ∈ E(K) : aj ̸= 0}

The set of all divisors on E is denoted by Div(E) and forms a group, where group
operation is addition and identity is the zero divisor 0 ∈ Div(E). The divisors of degree
zero forms a subgroup of Div(E) denoted by Div0(E), Div0(E) ⊂ Div(E).
Let E be given by y2 = x3 + ax+ b. A function on E is a rational function

f(x, y) ∈ K(x, y)

that is defined for at least one point in E(K)(so, for example, the rational function
1/(y2 − x3 − ax− b) is not allowed). The function takes values in K ∪∞.

A function is said to have a zero at a point P if it takes the value 0 at P , and it has
a pole at P if it takes the ∞ at P . We need to define the order of the zero or pole. Let
P be a point. There is a function uP , called a uniformizer at P , with uP (P ) = 0 and
such that every f(x, y) can be written in the form

f = uP
rg, with r ∈ Z and g(P ) ̸= 0,∞

1



The order of f at P is defined as

ordP (f) = r

Exmaple 2.1
Let E be y2 = x3 − x and f(x, y) = x. Let us consider the point P = (0, 0), we know
that the function y is a uniformizer at P , thus uP = y.

f(x, y) = x = y2
1

x2 − 1
= uP

rg

where g = 1/(x2 − 1) is non-zero and finite at P . Therefore ord(0,0)(x) = 2.

If f is a function on E that is not identically 0, define the divisor of f as

div(f) =
∑

P∈E(K)

ordP (f)[P ] ∈ Div(E)

This is a finite sum and hence a divisor.

Theorem 2.1
Let E be an elliptic curve and let f be a function on E that is not identically 0

1. f has only finitely many zeroes and poles

2. deg(div(f)) = 0

3. If f has no zeroes or poles (div(f) = 0), then f is a constant

For proof see, [2, Th 7.7.1].

Theorem 2.2
Let E be an elliptic curve. Let D be a divisor on E with deg(D) = 0. Then there is a
function f on E with

div(f) = D

if and only if
sum(D) = O

For proof see, [5, Th 11.2].

We will now describe the evaluation of a function at a divisor. If div(f) and D have
disjoint supports then evaluation of f at D is defined as

f(D) =
∏
j

f(Pj)
aj

The disjoint supports is necessary for f(D) to be non-trivial.
We call divisors D1 and D2 equivalent, denoted as D1 ∼ D2, if D1 = D2 + div(f) for
some function f .

2



Exmaple 2.2
Consider an elliptic curve E : y2 = x3 + ax+ b and a line l : y = λx+ ν as shown in the
following figure. By substituting l : y = λx + ν into E : y2 = x3 + ax + b we get three
zeroes which are the points P , Q and −(P +Q).

Figure 1: [1, Example 3.0.2]

Here we have only considered the affine coordinates. To consider l on E at O = (0 : 1 : 0)
we need to convert from affine coordinates to projective coordinates by substituting
x = X/Z and y = Y/Z. This gives (λX+νZ

Z
)2 = (X

Z
)3 + aX

Z
+ b which shows there is

a pole of order 3 at Z = 0. Thus l has divisor div(l) = [P ] + [Q] + [−(P +Q)]− 3[O].

We will now define the group of n-torsion points which will be required in the
definition of pairings. Let E be an elliptic curve defined over a field K. Let n be a
positive integer. The group of n-torsion points is defined as

E[n] = {P ∈ E(K)|nP = O}

We will now state the Weil reciprocity theorem which is required to prove several
properties of elliptic curve pairings.

Theorem 2.3 (Weil reciprocity)
Let f and g be non-zero functions on a curve such that div(f) and div(g) have disjoint
supports. Then f(div(g)) = g(div(f)).
For proof see, [3, Th IX.3].

3



3 Weil Pairing

Let S, T ∈ E[n]. Let DS and DT be divisors of degree 0 such that

sum(DS) = S sum(DT ) = T

and such that DS and DT have disjoint supports. Let fS and fT be functions such that

div(fS) = nDS div(fT ) = nDT

The Weil Pairing is defined as

en : E[n]× E[n]→ µn

en(S, T ) =
fT (DS)

fS(DT )

where µn is the set of nth root of unity.

Theorem 3.1
The Weil Pairing maps to the set of nth root of unity and is independent of the choice
of divisors DS and DT and functions fS and fT .
PROOF We will first show that the Weil Pairing maps to the set of nth root of unity.

en(S, T )
n =

(
fT (DS)

fS(DT )

)n

=
fT (nDS)

fS(nDT )
=

fT (div(fS))

fS(nDT )
=

fS(div(fT ))

fS(nDT )
=

fS(nDT )

fS(nDT )
= 1

This proves that en(S, T ) maps to the set of nth root of unity.
Now we will show that the Weil Pairing is independent of the choice of divisors DS and
DT . Let D′

S be another divisor such that sum(D′
S) = S and deg(D′

S) = 0 and D′
S and

DT have disjoint supports. We know that ∃f ′
S such that div(f ′

S) = nD′
S. Since D

′
S ∼ DS

we can write D′
S = DS + div(h) for some function h. Thus,

nD′
S = nDS + ndiv(h)

div(f ′
S) = div(fS) + div(hn)

f ′
S = fS · hn

Now,

fT (D
′
S)

f ′
S(DT )

=
fT (DS) · fT (div(h))
fS(DT ) · hn(DT )

=
fT (DS) · fT (div(h))
fS(DT ) · h(nDT )

=
fT (DS) · fT (div(h))
fS(DT ) · h(div(fT ))

=
fT (DS)

fS(DT )

This proves that pairing does not depend on the choice of DS, an analogous argument
can be used to prove the same for DT .

4



Now we will show that the Weil Pairing is independent of the choice of functions fS
and fT . Let f

′
S be another function such that div(f ′

S) = nDS. Since f ′
S and fS have the

same divisor, they are equal upto a constant i.e. f ′
S = c · fS. Now for DT =

∑
j aj[Pj],

f ′
S(DT ) =

∏
j

f ′
S(Pj)

aj =
∏
j

(c · fS(Pj))
aj = c

∑
j aj

∏
j

fS(Pj)
aj = fS(DT )

where the last step follows from deg(DT ) = 0 i.e.
∑

j aj = 0. This proves that Weil
Pairing is independent of the choice of fS, an analogous argument can be used to prove
the same for fT .

Theorem 3.2 (Bilinearity Property)
en is bilinear in each variable, this meas that for all S1, S2, S, T1, T2, T ∈ E[n]

en(S1 + S2, T ) = e(S1, T ) · e(S2, T )

en(S, T1 + T2) = e(S, T1) · e(S, T2, )

PROOF We prove linearity in the first factor; linearity in the second goes analogously.
Let S ∈ E[n] such that S = S1 + S2 and DS be divisor of degree 0 such that sum(DS) =
S1 + S2. Let T ∈ E[n] and DT be divisor of degree 0 such that sum(DT ) = T and DS

and DT have disjoint supports. We know that ∃fS and fT such that div(fS) = nDS and
div(fT ) = nDT .
Let DS1 be a divisor of degree 0 such that sum(DS1) = S1 and div(fS1) = nDS1 . Let
DS2 be another divisor of degree 0 such that sum(DS2) = S2 and div(fS2) = nDS2 . Now
DS ∼ (DS1 +DS2) thus for some function h,

DS = DS1 +DS2 + div(h)

nDS = nDS1 + nDS2 + ndiv(h)

div(fS) = div(fS1) + div(fS2) + div(hn)

fS = fS1 · fS2 · hn

Now,

en(S, T ) =
fT (DS)

fS(DT )

en(S1 + S2, T ) =
fT (DS1) · fT (DS2) · fT (div(h))
fS1(DT ) · fS2(DT ) · hn(DT )

= e(S1, T ) · e(S2, T )

5



4 Tate Pairing

Let E be an elliptic curve over Fq. Let n be an integer such that n|q − 1. Let P ∈
E(Fq)[n] and DP be a divisor of degree 0 such that sum(DP ) = P . Let fP be a function
such that div(fP ) = nDP . Let Q be a point representing a coset in E(Fq)/nE(Fq). Let
DQ be a divisor of degree 0 such that sum(DQ) = Q and such that DP and DQ have
disjoint supports.
The Tate Pairing is defined as

⟨·, ·⟩n : E(Fq)[n]× E(Fq)/nE(Fq)→ F∗
q/(F∗

q)
n

⟨P,Q⟩n = fP (DQ)

The modified Tate Pairing is defined as

⟨·, ·⟩n : E(Fq)[n]× E(Fq)/nE(Fq)→ µn

τn = fP (DQ)
q−1
n

where µn is theset of nth root of unity.

Theorem 4.1
The Tate Pairing is independent of the choice of divisor DQ and function fP .
PROOF We will now show that Tate Pairing is independent of the choice of divisor DQ.
Let fP be a function satisfying div(fP ) = nDP and D′

Q ∼ DQ ∼ ([Q] − [O]) such that
the support of both D′

Q and DQ is disjoint from support of div(fP ). Then we can write
D′

Q = DQ+div(h) for some function h defined over Fq such that div(fP ) and div(h) have
disjoint supports. Now,

f(D′
Q) = f(DQ + div(h))

= f(DQ) · f(div(h))
= f(DQ) · h(div(f))
= f(DQ) · h(nDP )

= f(DQ) · h(DP )
n

f(D′
Q) = f(DQ) (mod(F∗

q)
n)

where the last equation follows from h(DP ) ∈ F∗
q. This proves that Tate pairing is

independent of the choice of divisor DQ.
To prove that Tate pairing is independent of the choice of function fP . We know that fP
is unique upto a constant. Thus the proof follows similarly as Theorem 3.1.

6



Theorem 4.2 (Bilinearity Property)
The Tate Pairing satisfies bilinearity property

⟨P1 + P2, Q⟩n ≡ ⟨P1, Q⟩n · ⟨P2, Q⟩n

⟨P,Q1 +Q2⟩n ≡ ⟨P,Q1⟩n · ⟨P,Q2⟩n
where P, P1, P2 ∈ E(Fq)[n] and Q,Q1, Q2 ∈ E(Fq)
PROOF We will first prove linearity in the first factor. Let P = P1 + P2. Let DP1

be a divisor of degree 0 such that sum(DP1) = P1 and div(fP1) = nDP1 . Let DP2

be another divisor of degree 0 such that sum(DP2) = P2 and div(fP2) = nDP2 . Now
DP ∼ (DP1 +DP2) thus for some function h,

DP = DP1 +DP2 + div(h)

nDP = nDP1 + nDP2 + ndiv(h)

div(fP ) = div(fP1) + div(fP2) + div(hn)

fP = fP1 · fP2 · hn

Now,

⟨P,Q⟩n = fP (DQ)

⟨P1 + P2, Q⟩n = fP1(DQ) · fP2(DQ) · hn(DQ)

⟨P1 + P2, Q⟩n ≡ ⟨P1, Q⟩n · ⟨P2, Q⟩n

Now we will prove linearity in the second factor. Let Q = Q1 +Q2. Let DQ1 be a divisor
of degree 0 such that sum(DQ1) = Q1. Let DQ2 be another divisor of degree 0 such that
sum(DQ2) = Q2. Now DQ ∼ (DQ1 +DQ2). Thus,

⟨P,Q⟩n = fP (DQ)

⟨P,Q1 +Q2⟩n ≡ fP (DQ1) · fP (DQ2)

⟨P,Q1 +Q2⟩n ≡ ⟨P,Q1⟩n · ⟨P,Q2⟩n

7



5 Miller’s Algorithm

The Weil and Tate parings are computed as
fn,P (DQ)

fn,Q(DP )
and fn,P (DQ) respectively. Thus

to calculate the pairing we need to compute the function fn,P . We will first see a naive
method to calculate fn,P .

Figure 2: [1, Chapter 5]

The divisors for the lines shown in the figure are as follows:

div(l[m]P,P ) = (P ) + ([m]P ) + (−[m+ 1]P )− 3(O)
div(v[m+1]P ) = ([m+ 1]P ) + (−[m+ 1]P )− 2(O)

Now using Theorem 2.2 we can write the divisor of a function fm,P as

div(fm,P ) = m(P )− ([m]P )− (m− 1)(O)

Observe that div(fm+1,P )−div(fm,P ) = div(l[m]P,P )−div(v[m+1]P ). Thus we can compute

fm+1,P from fm,P by using fm+1,P = fm,P
l[m]P,P

v[m+1]P
. Starting with f2,P = 2(P )−([2]P )−(O)

then, we can repeat the process roughly n-1 times to obtain the function fn,P . Thus
pairing evaluation function fn,P is the product

fn,P = l[n−2]P,P ·
n−3∏
i=1

l[i]P,P
v[i+1]P

The above method computes fn,P by successively increasing fm,P by 1 at each iteration.
For practical applications n is large (at the very least 2160) this makes the naive method
computationally infeasible.

8



Miller’s algorithm overcomes this through the following observation. Rather than
adding one zero and pole via multiplying fm,P by linear functions, we can double the
number of zeros at P and poles at O by squaring fm,P .

div(f 2
m,P ) = 2m(P )− 2([m]P )− 2(m− 1)(O)

div(f2m,P ) = 2m(P )− ([2m]P )− (2m− 1)(O)
div(f2m,P )− div(f 2

m,P ) = 2([m]P )− ([2m]P )− (O)

Thus we can advance from fm,P to f2m,P using

f2m,P = f 2
m,P ·

l[m]P,[m]P

v[2m]P

Figure 3: Naive Method vs Miller’s Algorithm [1, Section 5.3]

The degree of fm,P grows linearly in the size of m, so the function fm,P becomes too
large to store explicitly as m increases. Thus at every stage Miller’s algorithm evaluates
fm,P (DQ). At any intermediate stage, we will not store fm,P but rather it’s evaluation at
DQ i.e. fm,P (DQ) ∈ Fq.

The following shows Miller’s Algorithm:
Input: P ∈ E(Fq)[n], DQ ∼ (Q) − (O) with support disjoint from div(fn,P ) and n =
(nr−1...n1n0)2 with nr−1 = 1.
Output: fn,P (DQ)← f

1: R← P ,f ← 1
2: for i = r − 2 to 0 do
3: Compute the line functions lR,R and v[2]R for doubling R
4: R← [2]R

5: f ← f 2 · lR,R

v[2]R
(DQ)

6: if ni = 1 then
7: Compute the line functions lR,P and vR+P for adding R and P
8: R← R + P
9: f ← f · lR,P

vR+P
(DQ)

10: end if
11: end for
12: return f

9



References

[1] Craig Costelo. Pairings for beginners.

[2] Steven D Galbraith. Mathematics of public key cryptography. Cambridge University
Press, 2012.

[3] Steven D Galbraith. “Pairings”. In: book Advances in elliptic curve cryptography
(2005).

[4] Martijn Maas. “Pairing-based cryptography”. In: Master’s thesis, Technische Uni-
versiteit Eindhoven (2004).

[5] Lawrence C Washington. Elliptic curves: number theory and cryptography. Chapman
and Hall/CRC, 2008.

10


	Introduction
	Divisors
	Weil Pairing
	Tate Pairing
	Miller's Algorithm

