
MProve-Nova: A Privacy-Preserving Proof of Reserves Protocol
for Monero

Varun Thakore, Saravanan Vijayakumaran
varunt@ee.iitb.ac.in,sarva@ee.iitb.ac.in

Department of Electrical Engineering, Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

ABSTRACT
We present MProve-Nova, a proof of reserves (PoR) protocol for
Monero that leverages the Nova recursive SNARK to achieve two
firsts (without requiring any trusted setup). It is the first privacy-
preserving Monero PoR protocol that does not reveal any informa-
tion about the exchange-owned outputs or their key images. It is
the first Monero PoR protocol where the proof size and proof veri-
fication time are constant, i.e. they are independent of the number
of outputs on the Monero blockchain and the number of outputs
owned by the exchange.

In our implementation of MProve-Nova, we observed proof sizes
of 27 KB and verification times of 4.5 seconds. Proving times in-
crease linearly with the number of outputs owned by the exchange
(≈ 0.7 hour per 1,000 outputs) but remain independent of the num-
ber of outputs on the Monero blockchain. We also describe the
design and implementation of a Nova-based non-collusion protocol
that takes the MProve-Nova proofs from a pair of exchanges as
input and proves that the sets of outputs they used to generate their
respective proofs of reserves are non-overlapping.

KEYWORDS
Cryptocurrency, Monero, Proof of Reserves, Nova.

1 INTRODUCTION
Cryptocurrency exchanges provide a user-friendly platform for
buying, selling, and trading of cryptocurrencies. While customers
can transfer their coins from exchanges to non-custodial wallets,
many of them prefer to keep their coins on exchanges to avoid the
hassles and risks of managing private keys. This leaves customer
funds at the risk of being stolen from the exchange due to security
breaches or internal fraud.

Some examples include the bankruptcy of Mt. Gox [50] and the
collapse of FTX [49]. The total funds lost due to exchange hacks
alone is estimated to be at least $2.4 billion as of April 2023 [13].
While losses due to security breaches can be avoided by hardening
the protocols involving the exchange’s private keys, internal fraud
by exchange operators cannot be completely prevented. But such
fraud can be detected early (and hence deterred) if exchanges are
required to regularly publish proofs of solvency.

A proof of reserves (PoR) is one half of a proof of solvency protocol,
with a proof of liabilities (PoL) being the other half. A PoR protocol
enables an exchange to prove that it owns a certain amount of a
cryptocurrency, i.e. it holds a certain amount of assets. For this
reason, a PoR is sometimes also called a proof of assets. A PoL
protocol enables an exchange to prove that the total amount of
assets it is storing on behalf of all its customers (its liabilities) equals

a certain amount. If an exchange’s assets exceeds its liabilities, it is
considered solvent.

In this paper, we focus solely on PoR protocols for Monero [35], a
privacy-focused cryptocurrency based on the CryptoNote protocol
[47]. Specifically, we are interested in publicly-verifiable privacy-
preserving PoR protocols. By publicly-verifiable, we mean that the
PoR can be verified by any party, not just a trusted auditor. By
privacy-preserving, we mean that the protocols do not reveal the
specific coin addresses (outputs) owned by the exchange.

Without this privacy requirement, it is trivial to construct a PoR
protocol for Monero. The exchange can generate signatures proving
ownership of a set of outputs and non-membership proofs proving
that the outputs have not been spent. The latter would involve
proving that the outputs’ key images1 have not appeared in any
past transaction.

Privacy is especially important in Monero PoR protocols because
Monero transactions contain ring signatures, with the output be-
ing spent hidden among decoy outputs sampled from the Monero
blockchain. If some outputs are identified as unspent outputs be-
longing to an exchange, they can be marked as decoys in all the
previous transaction rings they appear in. This reduces the effective
ring size of such transactions. The implication is that a non-private
Monero PoR protocol can negatively impact the privacy of other
Monero users, in addition to impacting the privacy of the exchange
generating the proof.

When the identities of an exchange’s outputs are hidden by a PoR
protocol, it opens up the possibility of collusion between exchanges.
Collusion refers to the situation when the same output is used
by two exchanges to generate their respective proofs of reserves.
This is a form of double spending, where one exchange could bribe
another to contribute to the former’s PoR. It is desirable to have
privacy-preserving PoR protocols that are also collusion-resistant.

Finally, a proof of solvency is useless if no one verifies it. So it is
desirable to have PoR/PoL protocols with short proofs that can be
verified quickly on personal computers. This will lower the bar for
proof verifiers, make it more likely that the proofs of reserves are
verified by customers, and hence reduce the likelihood of exchanges
in engaging in activities that could render them insolvent.

Paper organization. In the next section, we give a brief overview
of Monero. In Section 3, we describe the challenges involved in
designing Monero PoR protocols. Our contributions are listed in
Section 4. Section 5 describes related work. In Section 6, we briefly
cover aspects of Nova background required to describe MProve-
Nova. Section 7 describes the design of the MProve-Nova protocol
and Section 8 describes the proof of non-collusion. Their security

1Key images are one-way functions of outputs that are generated as part of the Monero
ring signatures to prevent double spending.

1



Thakore et al.

properties are discussed in Section 9. We provide implementation
details and performance results in Section 10 followed by conclu-
sions in Section 11.

2 OVERVIEW OF MONERO
Monero [35] is the most popular instantiation of the CryptoNote
protocol [47], with additional privacy and efficiency improvements.
In Monero transactions, receiver identities are hidden using one-
time addresses, sender identities are obfuscated using linkable ring
signatures, and the number of coins being transferred is hidden
using Pedersen commitments [41].

2.1 One-Time Addresses
Monero public keys are points in the prime order subgroup of the
Twisted Edwards elliptic curve Ed25519 [25]. Let G denote this
subgroup whose order is a 253-bit prime 𝑙 . Monero private keys are
integers in the set Z+

𝑙
= {1, 2, ..., 𝑙 − 1}. For the basepoint𝐺 ∈ G, the

public key 𝑃 ∈ G corresponding to a private key 𝑥 ∈ Z+
𝑙
is denoted

by 𝑃 = 𝑥𝐺 . We will use additive notation for scalar multiplication
throughout this paper.

Suppose Alice wants to send some Monero coins to Bob.

(1) Bob shares a public key pair (𝐵𝑣𝑘 , 𝐵𝑠𝑘 ) ∈ G2 withAlice. The
subscripts 𝑣𝑘 and 𝑠𝑘 are abbreviations of view key and spend
key. Let (𝑏𝑣𝑘 , 𝑏𝑠𝑘 ) ∈ Z+𝑙 × Z

+
𝑙
denote the corresponding

private key pair.
(2) She signs a transaction transferring coins she owns to Bob.

This transaction will contain a one-time address 𝑃 that will
be controlled by Bob and a random point 𝑅.

(3) Alice creates the one-time address 𝑃 as follows:
(i) She chooses a random scalar 𝑟 ∈ Z+

𝑙
.

(ii) She computes the one-time address as

𝑃 = 𝐻 (𝑟𝐵𝑣𝑘 ∥𝑜𝑖𝑛𝑑𝑒𝑥 )𝐺 + 𝐵𝑠𝑘

where ∥ denotes concatenation, 𝐻 : {0, 1}∗ ↦→ Z+
𝑙

is a cryptographic hash function, and 𝑜𝑖𝑛𝑑𝑒𝑥 is the
index of the new output (defined in Section 2.4) in the
transaction.2 Note that the private key corresponding
to 𝑃 is known only to Bob as it equals

𝑥 = 𝐻 (𝑟𝐵𝑣𝑘 ∥𝑜𝑖𝑛𝑑𝑒𝑥 )𝐺 + 𝑏𝑠𝑘 ,

where 𝐵𝑠𝑘 = 𝑏𝑠𝑘𝐺 .
(4) Alice computes the random point 𝑅 as 𝑟𝐺 .
(5) Alice broadcasts the transaction containing (𝑃, 𝑅), which

will be eventually included in a Monero block by miners.
(6) Bob identifies transactions transferring coins to him as

follows:
(i) For every newMonero block, Bob reads the point pairs
(𝑃, 𝑅) in all the transactions.

(ii) He computes the point 𝑃 ′ = 𝐻 (𝑏𝑣𝑘𝑅∥𝑜𝑖𝑛𝑑𝑒𝑥 )𝐺 + 𝐵𝑠𝑘 .
(iii) If 𝑃 ′ = 𝑃 , Bob concludes that the transaction is sending

coins to him.
(7) Bob adds 𝑃 to the list of one-time addresses owned by him.

2The output index is included to allow the creation of distinct one-time addresses from
the same public key pair in the same transaction.

Note that Bob will always be able to identify transactions meant for
him as 𝑟𝐵𝑣𝑘 = 𝑟𝑏𝑣𝑘𝐺 = 𝑏𝑣𝑘𝑅. This is nothing but a Diffie-Hellman
shared secret between public keys 𝑅 and 𝐵𝑣𝑘 .

One-time addresses generated using Bob’s public key pair cannot
be linked to his key pair as long as the decisional Diffie-Hellman
(DDH) problem remains hard in Ed25519. In this way, Monero hides
the receiver’s identity in a transaction.

2.2 Linkable Ring Signatures
Monero uses linkable ring signatures [32, 40] to obfuscate sender
identities, while preventing double spending. Given a list of public
keys, a ring signature allows a signer to prove that he knows the
private key of one public key from the list without revealing which
one. A linkable ring signature allows an observer to link multiple
ring signatures generated using the same private key.

Suppose Bob wants to spend the coins tied to a one-time address
𝑃 he owns, i.e. he knows 𝑥 ∈ Z+

𝑙
such that 𝑃 = 𝑥𝐺 . This one-time

address is already present on the Monero blockchain. He proceeds
as follows:

(1) For a protocol-specified ring size 𝑛, Bob randomly samples
𝑛 − 1 one-time addresses 𝑃1, 𝑃2, . . . , 𝑃𝑛−1 (all distinct from
𝑃 ) from the blockchain. These are called decoy addresses.

(2) Bob signs the spending transaction using a linkable ring
signature on the set of one-time addresses

P = {𝑃1, 𝑃2, . . . , 𝑃𝑛−1, 𝑃}.

This set is sorted in chronological order (oldest address first)
to prevent the ordering of the keys in P from leaking the
identity of 𝑃 .

(3) Bob includes the linkable ring signature in the transaction
he broadcasts to the Monero P2P network.

Hiding the identity of the spending key opens up the possibility
of double spending. To prevent this, the linkable ring signature
contains an Ed25519 point called the key image, defined as 𝐼 =

𝑥𝐻𝑝 (𝑃) where 𝐻𝑝 : G ↦→ G is a point-valued cryptographic hash
function.

Two linkable ring signatures spending from the same one-time
address will have identical key images. The Monero blockchain
maintains the set I of key images that have appeared in past trans-
actions. If the coins tied to a one-time address 𝑃 have already been
spent, then its key image 𝐼 will already be in I. Monero block min-
ers will reject transactions whose linkable ring signatures have key
images from I.

At the same time, revealing the key image of a one-time address
does not leak information about the latter as long as the DDH prob-
lem remains hard in Ed25519. To see this, let 𝐻𝑝 (𝑃) = 𝑦𝐺 for some
unknown 𝑦 ∈ Z+

𝑙
. Then 𝐼 = 𝑥𝐻𝑝 (𝑃) = 𝑥𝑦𝐺 is the Diffie-Hellman

function of 𝑃 = 𝑥𝐺 and 𝐻𝑝 (𝑃). If the DDH problem is assumed to
be hard in Ed25519, then given 𝑃 and 𝐻𝑝 (𝑃) a polynomial-time ob-
server cannot distinguish between 𝐼 and a uniformly chosen point
from G.

2



MProve-Nova

2.3 Pedersen Commitments to Amounts
In the CryptoNote protocol specification, the number of coins tied
to a one-time address was public. To create a ring signature spend-
ing from an address, the spender could only sample from other
addresses containing the same amount.

To improve privacy, Monero introduced the use of Pedersen com-
mitments [41] to hide the number of coins tied to a one-time address.
The Pedersen commitment to an amount 𝑎 ∈ {0, 1, 2, ..., 264 − 1} is
given by

𝐶 (𝑦, 𝑎) = 𝑦𝐺 + 𝑎𝐻,

where 𝑦 ∈ Z+
𝑙
is a randomly chosen blinding factor and 𝐻 ∈ G is

a curve point whose discrete logarithm with respect to the base
point 𝐺 is unknown. Such commitments are perfectly hiding and
computationally binding.

For a transaction which transfers coins to be valid, the source ad-
dress must have more coins than the sum of the transferred amount
and the transaction fees. When the number of coins associated
with addresses are hidden in Pedersen commitments, checking this
condition is non-trivial.

Pedersen commitments are homomorphic in the following sense.
If 𝐶1 and 𝐶2 are Pedersen commitments to amounts 𝑎1, 𝑎2 respec-
tively, then𝐶1+𝐶2 is a Pedersen commitment to the amount 𝑎1+𝑎2.
The homomorphic property of Pedersen commitments is used in
conjunction with range proofs to check the sum of input amounts in
a transaction exceed the sum of the output amounts. A range proof
proves that the amount committed to by a Pedersen commitment
is in a given range like {0, 1, 2, ..., 264 − 1}.

When Alice wants to transfer some of her coins to Bob, she
creates a Pedersen commitment 𝐶 (𝑎,𝑦) in addition to the one-time
address 𝑃 whose private key is known to Bob. Bob needs to know
𝑎 and 𝑦 to verify the transaction and spend from 𝑃 in the future.

To communicate 𝑎 and 𝑦 to Bob, Alice includes

𝑎′ = 𝑎 ⊕ 𝐻𝐾 (𝐻𝐾 (𝑟𝐵𝑣𝑘 ))
𝑦′ = 𝑦 ⊕ 𝐻𝐾 (𝑟𝐵𝑣𝑘 )

in the transaction, where ⊕ is bitwise XOR and 𝐻𝐾 is the Keccak
hash function. As the point 𝑅 is contained in the transaction, Bob
can use his private view key 𝑏𝑣𝑘 to recover 𝑎 and 𝑦 from 𝑎′ and 𝑦′
using the Diffie-Hellman shared secret 𝑟𝐵𝑣𝑘 = 𝑏𝑣𝑘𝑅 as

𝑎 = 𝑎′ ⊕ 𝐻𝐾 (𝐻𝐾 (𝑏𝑣𝑘𝑅)),
𝑦 = 𝑦′ ⊕ 𝐻𝐾 (𝑏𝑣𝑘𝑅) .

2.4 Monero Outputs
The destination of coin transfers in a Monero transaction is called
an output. A transaction can have multiple outputs. Each output is
characterized by a pair (𝑃,𝐶) ∈ G2, where 𝑃 is a one-time address
and 𝐶 is a Pedersen commitment to the number of coins stored in
the output.

Outputs containing Pedersen commitments are created in a Mon-
ero transaction type called ring confidential transaction (RingCT)
[40]. Monero made the RingCT type of transactions mandatory in
September 2017 [36].

In our design of MProve-Nova, we only consider RingCT outputs.
In case an exchange owns a non-RingCT output, they can use a

Pedersen commitment with zero blinding factor, i.e. a commitment
of the form 𝐶 (0, 𝑎) = 𝑎𝐻 , to represent the output.

3 CHALLENGES IN DESIGNING A MONERO
POR PROTOCOL

In this section, we describe the challenges involved in designing
Monero PoR protocols. We also describe how previous PoR pro-
tocols for Monero address these challenges and where they fall
short. This description will help clarify our contributions listed
in Section 4. Many cryptocurrency protocols (including Bitcoin)
have the notion of an unspent transaction output (UTXO). As the
name suggests, this corresponds to an output having coins that
have not been spent by their owner. For such cryptocurrencies, a
PoR protocol can restrict its attention to the UTXO set and ignore
all spent transaction outputs.

Since Monero hides the identity of the spending key in a trans-
action, one cannot partition the output set into spent and unspent
outputs. While some transaction graph analysis techniques have
been able to categorize a large percentage of non-RingCT outputs
as spent [28, 37], it is not possible to know if any of the RingCT
outputs (except for 5 of them) have been spent [48, 51].

Any Monero PoR protocol must prove two compound state-
ments:

(1) The prover knows the private keys corresponding to some
outputs on the Monero blockchain. The sum of the coins in
the output commitments will add up to the reserves owned
by the prover.

(2) The outputs contributing to the prover’s reserves have not
been already spent in a past transaction.

While a PoR protocol could be executed by anyone, it is most useful
when the prover is a cryptocurrency exchange which is trying to
convince its customers that it is solvent.

As discussed in the previous section, one cannot simply reveal
the exchange-owned outputs as this would violate the privacy of
both the exchange and other Monero users. One solution is to
give a privacy-preserving proof of membership of exchange-owned
outputs in the set of all outputs, together with a proof of knowledge
of private keys for each such output.

But this is not enough. One needs to also give a privacy-preserving
proof that the exchange-owned outputs are unspent. Furthermore,
one needs to ensure that a malicious exchange does not double
count, i.e. it does not artificially inflate its reserves by counting the
coins in an output more than once.

PreviousMonero PoR protocols, namelyMProve [21] andMProve+
[20], partially achieved the above goals as follows:

• They both proved that the exchange-owned outputs be-
longed to an anonymity set, a subset of the set of all outputs
that appeared on the Monero blockchain. For performance
reasons, they chose the anonymity set to be much smaller
than the set of all outputs.

• They both revealed one key image per exchange-owned
output that contributed to the reserves. This had several
implications:
– The verifier could verify that the exchange was using

only unspent outputs by checking that the revealed
3



Thakore et al.

key images had not appeared in any transaction on
Monero blockchain.

– Amalicious exchange could not double count, as using
an output more than once in the same PoRwould result
in a repeated key image.

– The verifier could verify that two different exchanges
were not colluding by checking that the sets of key
images revealed by them were non-overlapping. So
the proof of non-collusion was implicitly available in
the original protocol itself.

But these approaches had some drawbacks.
• The proof size and proof verification time in both MProve

and MProve+ increased linearly with the size of the anony-
mity set. Additionally, in MProve+ the memory required
for generating and verifying proofs also increased linearly
with the size of the anonymity set.
• More seriously, revealing the key images negatively im-

pacted the privacy of the exchange and, in some cases, the
privacy of regular Monero users.
– In MProve, if the exchange spent from an output that

was used to previously generate a MProve proof, then
the output was immediately identified as the spending
output in the transaction ring. This meant that all
previous transaction rings where this output appeared
as a decoy had their effective ring size reduced by one.

– MProve+ improved upon MProve by breaking the di-
rect link between the key image and an exchange-
owned output. If the exchange spent from an output
that was used to previously generate a MProve+ proof,
then that output could be identified as the spending
output only if the transaction ring and the anonymity
set had exactly one output in common. But the trans-
action would always be identified as being initiated by
the exchange.

In this paper, we propose a Monero PoR protocol which does not
suffer these drawbacks, while preventing malicious provers from
using spent outputs or double counting unspent outputs.

4 OUR CONTRIBUTIONS
Our contributions are as follows:

(1) We describe the design and implementation of MProve-
Nova, a publicly-verifiable privacy-preserving PoR protocol
for Monero. Our design is based on Nova [27], a recursive
SNARK that does not require a trusted setup. MProve-Nova
has the following advantages:
(a) It is privacy-preserving in the random oracle model in

the sense that it does not reveal any information about
the exchange-owned outputs or their key images.

(b) It is the first Monero PoR protocol with constant proof
size and proof verification time i.e. these two metrics
are independent of the number of outputs on the Mon-
ero blockchain and the number of outputs owned by
the exchange. It achieves this by leveraging the Nova
folding scheme to fold all the individual statements
proving ownership of an exchange-owned output and
the fact that it is unspent into a single statement.

(2) We analyze the security of MProve-Nova. Using the sound-
ness and zero-knowledge properties of Nova, we show that
it is
(a) inflation resistant, i.e. a computationally bounded ex-

change cannot generate an MProve-Nova proof that
proves that it owns a number of coins that is greater
than the actual number of coins it owns, and

(b) privacy-preserving in the random oracle model.
(3) The reference implementation of Nova [33] is currently not

zero-knowledge [34]. But Angel et al. [3, 4] implemented
a zero-knowledge version of Nova by using hiding com-
mitments and zero-knowledge sumcheck. Their code was
based on an older version of the Nova implementation. We
ported the relevant commits to the latest version of the
Nova implementation. We used our modified implementa-
tion of Nova to implement MProve-Nova in Rust [38].
To leverage Nova, the statements requiring proof need to
be expressed using rank-1 constraint system (R1CS) con-
straints. While it was possible to create an R1CS gadget for
MProve-Nova using the circom circuit compiler [23] and
the Nova Scotia adapter [10], we chose to implement the
gadget directly using the bellpepper library [30].
To implement the MProve-Nova gadget, we implemented
the following component gadgets in bellpepper.
(a) Regular and indexed Merkle trees [5, 45]: While imple-

mentations of regular Merkle trees already existed in
bellman [53] (which was forked to create bellpepper),
our implementation of indexed Merkle trees is new.

(b) bellpepper-emulated: A gadget for non-native finite
field arithmetic inspired by the emulated [18] pack-
age (written in Go) from the gnark zkSNARK library
[11]. When the field order is a pseudo-Mersenne prime,
we added limb folding and efficient field membership
checks inspired by techniques from circom-ecdsa [1].

(c) bellpepper-ed25519: A gadget for Ed25519 elliptic curve
operations using bellperson-emulated. This was needed
as Monero uses Ed25519 curve points for addresses
(outputs) and amount commitments.

(4) We describe the design, implementation [38], and secu-
rity properties of a protocol for generating a proof of non-
collusion between a pair of exchanges that useMProve-Nova
to generate their respective proofs of reserves. This proto-
col is also based on Nova, resulting in constant proof sizes
and proof verification times.
This protocol involves a pair of exchanges, where only
one of them needs to generate the proof. The exchange
generating the proof will discover the number of outputs
owned by the other exchange. No other information is
revealed. The proof can be verified by third parties, who do
not gain any knowledge about the exchange-owned outputs
(not even their number).

5 RELATEDWORK
Provisions [19], proposed by Dagher et al., is one of the first privacy-
preserving proof of solvency protocol for Bitcoin exchanges. It
consists of three sub-protocols: proof of reserves, proof of liabilities

4



MProve-Nova

𝐹 𝐹 𝐹

𝑤0 𝑤𝑖 𝑤𝑛−1

𝑧0 𝑧𝑛· · · · · ·𝑧1 𝑧𝑖 𝑧𝑖+1 𝑧𝑛−1

Figure 1: Incrementally Verifiable Computation

and proof of solvency. In proof of reserves, the exchange generates
a Pedersen commitment [41] 𝐶res to the total assets corresponding
to a subset of owned addresses Pown from a larger anonymity set P.
The exchange submits a proof that it included only those amounts
in 𝐶res for which it knows the private keys corresponding to the
addresses in P. In proof of liabilities, the exchange generates a
Pedersen commitment to each bit of the balance amount owned by
the customer. These commitments are combined to calculate the
total liabilities 𝐶liabilities of the exchange. In proof of solvency, the
exchange computes 𝐶diff = 𝐶res − 𝐶liabilities and proves that 𝐶diff
commits to a non-negative amount. There is also a fourth protocol
to prove non-collusion but it reveals the number of addresses owned
by the exchange and is presented as an optional protocol. Provisions
is specific to Bitcoin and cannot be applied to privacy-preserving
cryptocurrencies such as Monero.

In 2019, Blockstream [42, 43] released a tool to generate proof
of reserves which involves generating an invalid transaction us-
ing all the UTXOs of an exchange and an invalid input so that
exchange’s funds are not spent. This technique does not preserve
address privacy since all the UTXOs owned by the exchange are
revealed.

Stoffu Noether implemented a technique for generating proof
of reserves for Monero which was added to the official Monero
client in 2018 [44]. It takes a target amount as input and finds
the smallest set of addresses owned by the prover whose total
amount exceeds the target amount. Then the set of addresses and
their corresponding key images are revealed as part of the proof of
reserves. This technique reveals the addresses owned by the prover,
their corresponding amounts, and their key images.

Dutta et al. [21] proposed MProve, a proof of reserves protocol
for Monero exchanges. MProve+ [20] was later proposed which
enhanced the privacy of MProve by using techniques from Bullet-
proofs [12] and Omniring [31]. The details of MProve and MProve+
with drawbacks have been covered in Section 3.

Some notable work on proof of reserves include, gOTzilla [8]
proposed by Baldimtsi et al., which is an interactive zero-knowledge
protocol for proving disjunctive statements. Additionally, Chatzi-
giannis and Chalkias [17] proposed proof of assets for account-
based blockchains such as Diem, formerly known as Libra [2].

There has been significant work in proof of liabilities (PoL), most
notable ones being DAPOL [15] and DAPOL+ [24]. MProve-Nova
can be used with DAPOL+ to provide a proof of solvency. Chalkias
et al. [14] highlighted vulnerabilities in the implementation of PoL
used in production. Chatzigiannis et al. [16] evaluated and system-
atized several distributed payment systems which offer auditability.
Their work provides a comparison between different proof of assets

and proof of liabilities schemes on the basis of their efficiency and
privacy properties.

6 NOVA
In this section, we cover aspects of the Nova recursive SNARK [27]
required to describe the MProve-Nova protocol. Nova introduced
a non-interactive folding scheme for committed relaxed rank-1
constraint systems (R1CS) [27]. It consists of two main components:
an incrementally verifiable computation (IVC) [46] scheme and a
zkSNARK to prove knowledge of valid IVC proofs.

6.1 IVC Scheme
An IVC scheme allows a prover to prove that for some function 𝐹

and public values 𝑧0 and 𝑧𝑛 , it knows auxiliary inputs𝑤0,𝑤1, . . . ,𝑤𝑛−1
such that

𝑧𝑛 = 𝐹 (𝐹 (. . . 𝐹 (𝐹 (𝐹 (𝑧0,𝑤0) ,𝑤1) ,𝑤2) , . . .) ,𝑤𝑛−1) .

As shown in Figure 1, this is achieved by proving the execution of
a series of incremental computations of the form 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ),
for each 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, where 𝑧𝑖 and 𝑧𝑖+1 are the public input
and output in the 𝑖th step, respectively.

The Nova IVC scheme uses a non-interactive folding scheme for
committed relaxed R1CS. The step function 𝐹 needs to be expressed
using R1CS constraints. At each step 𝑖 , the variables 𝑧𝑖 , 𝑧𝑖+1, and
𝑤𝑖 define an R1CS instance. This instance is folded into a running
committed relaxed R1CS instance which represents the correct
execution of steps 0, 1, . . . , 𝑖 − 1.

The IVC prover gives a proof Π𝑖+1 at each step 𝑖 , which attests
that 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ) was computed correctly and the folding of the
two committed relaxed R1CS instances is valid. The IVC proof Π𝑖+1
attests to the correct execution of steps 0, 1, . . . , 𝑖 .

The Nova IVC scheme satisfies completeness and knowledge
soundness. For more details on the Nova IVC scheme, we refer the
reader to Section 5 of the Nova paper [27].

6.2 zkSNARK of IVC Proof
After 𝑛 steps, the IVC prover produces a proof Π𝑛 that attests to the
correct execution of steps 0, 1, . . . , 𝑛 − 1. The IVC prover can send
this proof to the verifier, but this does not satisfy zero-knowledge
since the proof Π𝑛 does not hide the prover’s auxiliary inputs.

Instead, Nova uses a zero-knowledge SNARK (zkSNARK) to
prove knowledge of a valid IVC proof Π𝑛 .

(1) The prover P𝑧𝑘 and verifierV𝑧𝑘 of the zkSNARK are given
the instance (𝑛, 𝑧0, 𝑧𝑛).

5



Thakore et al.

𝐹


bh

TXOT root
KIT root

DST𝑗−1 root
𝐶𝑟𝑒𝑠
𝑗−1




bh
TXOT root
KIT root
DST𝑗 root

𝐶𝑟𝑒𝑠
𝑗


[
𝑖 𝑗 , 𝑥𝑖 𝑗 , 𝐶𝑖 𝑗 , 𝐻𝑝 (𝑃𝑖 𝑗 ), Merkle proofs, 𝑟 𝑗

]
Figure 2: Step Function for PoR protocol

(2) The prover P𝑧𝑘 additionally takes the proving key pk and
IVC proof Π𝑛 to produce the proof 𝜋 .

𝜋 ← P𝑧𝑘 (pk, (𝑛, 𝑧0, 𝑧𝑛),Π𝑛)
(3) The verifierV𝑧𝑘 takes the verification key vk, proof 𝜋 , and
(𝑛, 𝑧0, 𝑧𝑛) as inputs. It then either accepts the proof or re-
jects it.

If the zkSNARK is based on a Pedersen commitment scheme for
vectors, then the proof size is O (log |𝐹 |) and the proof verification
time is O (|𝐹 |). Here |𝐹 | is the number of R1CS constraints needed
to express the computation of the step function 𝐹 .

7 MPROVE-NOVA POR PROTOCOL
MProve-Nova requires the specification of a Nova step function
𝐹 that will prove ownership of an unspent Monero output (see
definition in Section 2.4) at each step and accumulate the coins
in the output into a running sum. The necessity of the different
components in 𝐹 will become apparent when they are mapped to
the requirements of any privacy-preserving Monero PoR protocol.
These requirements are listed below:

R1. An exchange must only use outputs present on the Monero
blockchain to contribute to its reserves.

R2. An exchange must only use outputs it owns to contribute
to its reserves.

R3. An exchange must not use spent outputs to contribute to
its reserves.

R4. An exchange must use each owned output at most once to
contribute to its reserves.

7.1 Merkle Trees
To satisfy these requirements, we require one regular Merkle tree
and two indexed Merkle trees [5]. The latter type of trees were
introduced in [45] to generate efficient non-membership proofs
inside a SNARK.

The regular Merkle tree is called transaction outputs tree (TXOT)
and the two indexed Merkle trees are called key images tree (KIT)
and double spend tree (DST). TXOT is constructed using one-time
address, Pedersen commitment to amount and hash of one-time
address. The purpose of TXOT is to ensure that the exchange only
uses outputs which it owns and those outputs are present on the
Monero blockchain (satisfying requirements R1 and R2). KIT is
constructed using all the key images which have appeared on the

Monero blockchain and its main purpose is to prevent the exchange
from using a spent output (satisfying requirement R3). DST is con-
structed using private keys owned by the exchange and block height.
Its main purpose is to prevent the exchange from using an owned
output more than once (satisfying requirement R4).

All three trees are constructed using the Poseidon hash function
[22] to reduce the number of R1CS constraints used to express
𝐹 . Let 𝐻𝑝𝑜𝑠 : {0, 1}∗ ↦→ F𝑠 be the Poseidon hash function where
F𝑠 is the scalar field used to express the R1CS constraints. The
details regarding how these trees are used to satisfy requirements
R1-R4 is explained in subsequent sections. We will now explain the
construction of each of the three trees in detail.

(1) Transaction Outputs Tree: Let 𝐻𝑝 : G ↦→ G be the cryp-
tographic hash function used to compute the key image
of a one-time address 𝑃 = 𝑥𝐺 as 𝑥𝐻𝑝 (𝑃). Let ∥ denote the
string concatenation operator.
For aMonero block height bh, letTbh = {(𝑃1,𝐶1), (𝑃2,𝐶2), . . .}
be the set of all transaction outputs that have appeared
in blocks up to height bh. TXOT is constructed using the
leaves

{
𝐻𝑝𝑜𝑠

(
𝑃 ∥𝐶 ∥𝐻𝑝 (𝑃)

)
| (𝑃,𝐶) ∈ Tbh

}
, sorted in the or-

der of appearance of the one-time addresses (the 𝑃 ’s) on
the blockchain. We omit the dependence of TXOT on bh for
simplicity. The motivation for choosing this particular leaf
structure is described in Section 7.3.2.

(2) Key Images Tree: Let Ibh be the set of all key images that
have appeared on theMonero blockchain up to block height
bh. KIT is constructed using the leaves {𝐻𝑝𝑜𝑠 (𝐼 ) | 𝐼 ∈ Ibh},
sorted in the order of appearance of the key images on the
blockchain. Once again, we omit the dependence of KIT on
bh for simplicity.

(3) Double Spend Tree: While the previous two trees are pop-
ulated before the MProve-Nova protocol execution, DST
is populated during the protocol execution. DST is ini-
tially empty and is later populated with leaves of the form
𝐻𝑝𝑜𝑠 (𝑥 ∥bh) where 𝑥 is a private key. LetDST𝑗−1 andDST𝑗
denote the state of the double spend tree before and after
the 𝑗th step, respectively.

7.2 Step Function Inputs and Outputs
In this section, we will explain the inputs and outputs of the step
function as shown in Figure 2. Let 𝑛 be the number of outputs the

6



MProve-Nova

Algorithm 1: Overview of MProve-Nova PoR protocol
Input : Public input 𝑧0 and private inputs

{𝑤0,𝑤1, · · · ,𝑤𝑛−1}
Output : Public output after 𝑛 steps 𝑧𝑛

1 foreach j ∈ {1, 2, · · · , 𝑛} do
2 Prove ownership of one-time address 𝑃𝑖 𝑗
3 Prove membership of 𝑃𝑖 𝑗 in transactions outputs tree

TXOT
4 Compute the key image 𝐼𝑖 𝑗 corresponding to 𝑃𝑖 𝑗
5 Prove non-membership of 𝐼𝑖 𝑗 in key images tree KIT
6 Prove non-membership of the private key 𝑥𝑖 𝑗

corresponding to 𝑃𝑖 𝑗 in the double spend tree DST𝑗−1
7 Insert a leaf corresponding to 𝑥𝑖 𝑗 into DST𝑗−1 to get

DST𝑗
8 Accumulate the amount commitment corresponding to

𝑃𝑖 𝑗 into 𝐶𝑟𝑒𝑠𝑗−1 to get 𝐶𝑟𝑒𝑠
𝑗

9 end

exchange will use to contribute to its reserves. For 𝑗 = 1, 2, . . . , 𝑛,
the function 𝐹 takes the following as public inputs 𝑧 𝑗−1 in step 𝑗 :

(i) The block height bh.
(ii) The root hash of TXOT.
(iii) The root hash of KIT.
(iv) The root hash of DST𝑗−1, double spend tree before step 𝑗 .
(v) A Pedersen commitment 𝐶𝑟𝑒𝑠

𝑗−1 to the reserves accumulated
before step 𝑗 . 𝐶𝑟𝑒𝑠0 is set to 𝐺 , which commits to the zero
amount with blinding factor 1.

The public outputs 𝑧 𝑗 of 𝐹 in step 𝑗 are the same as above, except
for two differences.

(i) The root hash of DST𝑗−1 is replaced with the root hash of
DST𝑗 , the double spend tree after step 𝑗 .

(ii) The Pedersen commitment 𝐶𝑟𝑒𝑠
𝑗−1 is replaced with 𝐶𝑟𝑒𝑠

𝑗
, the

reserves accumulated after step 𝑗 .

𝐹 also takes the following as private inputs𝑤 𝑗−1 in step 𝑗 :

(i) An index 𝑖 𝑗 such that 1 ≤ 𝑖 𝑗 ≤ |Tbh |.
(ii) The private key 𝑥𝑖 𝑗 corresponding to the one-time address

𝑃𝑖 𝑗 .
(iii) The values 𝐶𝑖 𝑗 and 𝐻𝑝 (𝑃𝑖 𝑗 ) in the preimage of the leaf

𝐻𝑝𝑜𝑠

(
𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻𝑝 (𝑃𝑖 𝑗 )

)
of TXOT at index 𝑖 𝑗 .

(iv) A Merkle proof of a leaf in TXOT to prove the membership
of the leaf 𝐻𝑝𝑜𝑠

(
𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻𝑝 (𝑃𝑖 𝑗 )

)
in TXOT.

(v) A second Merkle proof of a leaf in KIT to prove the non-
membership of the Poseidon hash of the key image 𝐼𝑖 𝑗 =

𝑥𝑖 𝑗𝐻𝑝 (𝑃𝑖 𝑗 ) in the KIT.
(vi) A third Merkle proof of a leaf in DST𝑗−1 to prove the non-

membership of the leaf 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh) in DST𝑗−1.
(vii) A fourth Merkle proof in DST𝑗−1 to aid the insertion of the

leaf 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh).
(viii) A random scalar 𝑟 𝑗 to blind the sum 𝐶𝑟𝑒𝑠

𝑗−1 +𝐶𝑖 𝑗 .

7.3 Step Function Computation
Algorithm 1 gives a high level overview of MProve-Nova PoR pro-
tocol. For each 𝑗 ∈ {1, 2, . . . , 𝑛}, in step 𝑗 function 𝐹 executes the
following substeps:

S1. Using the private input 𝑥𝑖 𝑗 , it computes the point 𝑃𝑖 𝑗 =

𝑥𝑖 𝑗𝐺 . This computation proves knowledge of the private
key corresponding to 𝑃𝑖 𝑗 .

S2. Using 𝑃𝑖 𝑗 and the private inputs 𝐶𝑖 𝑗 and 𝐻𝑝 (𝑃𝑖 𝑗 ), it com-

putes the hash 𝐻𝑝𝑜𝑠

(
𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻𝑝 (𝑃𝑖 𝑗 )

)
.

S3. Using the first private Merkle proof input, it proves the
membership of 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻𝑝 (𝑃𝑖 𝑗 )) in TXOT.

S4. Using the private inputs 𝑥𝑖 𝑗 and 𝐻𝑝 (𝑃𝑖 𝑗 ), it computes the
key image 𝐼𝑖 𝑗 = 𝑥𝑖 𝑗𝐻𝑝 (𝑃𝑖 𝑗 ) and its hash 𝐻𝑝𝑜𝑠 (𝐼𝑖 𝑗 ).

S5. Using the second private Merkle proof input, it proves the
non-membership of 𝐻𝑝𝑜𝑠 (𝐼𝑖 𝑗 ) in KIT.

S6. Using the private input𝑥𝑖 𝑗 , it computes the hash𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh).
S7. Using the third private Merkle proof input, it proves the

non-membership of 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh) in DST𝑗−1.
S8. Using the fourth private Merkle proof input, it inserts

𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh) into DST𝑗−1 to obtain the root hash of the
new tree state DST𝑗 .

S9. Using the private input 𝑟 𝑗 , it computes the point 𝐶𝑟𝑎𝑛𝑑
𝑗

=

𝑟 𝑗𝐺 .
S10. Using the private input𝐶𝑖 𝑗 , public input𝐶𝑟𝑒𝑠𝑗−1, and𝐶

𝑟𝑎𝑛𝑑
𝑗

, it
computes the updated Pedersen commitment𝐶𝑟𝑒𝑠

𝑗
= 𝐶𝑟𝑒𝑠

𝑗−1+
𝐶𝑖 𝑗 +𝐶𝑟𝑎𝑛𝑑𝑗

.
The public outputs after the 𝑛th step contain 𝐶𝑟𝑒𝑠𝑛 and the root

hash of DST𝑛 .
• The exchange will claim that 𝐶𝑟𝑒𝑠𝑛 is a Pedersen comm-

mitment to its total reserves. The exchange can generate a
range proof on the point𝐶𝑟𝑒𝑠𝑛 −𝑡𝐻 to prove that its reserves
exceed a threshold 𝑡 .

• The root hash of DST𝑛 will be used as input to the non-
collusion protocol.

7.3.1 Satisfying Monero PoR requirements. Let us revisit the re-
quirements listed at the beginning of this section.

(i) Steps S2 and S3 prove that𝐶𝑖 𝑗 is a Pedersen commitment to
coins tied to the one-time address 𝑃𝑖 𝑗 present on theMonero
blockchain. Steps S9 and S10 ensure that only such 𝐶𝑖 𝑗 ’s
contribute to the total reserves of the exchange. Thus the
exchange can only use outputs from the Monero blockchain
to contribute to its reserves (requirement R1).

(ii) Step S1 proves that the exchange knows the private key
𝑥𝑖 𝑗 corresponding to 𝑃𝑖 𝑗 . Thus requirement R2 is satisfied,
i.e. the exchange only uses outputs it owns to contribute to
its reserves.

(iii) Steps S4 and S5 prove that the exchange can only use un-
spent outputs to contribute to its reserves, thus satisfying
requirement R3. If an exchange were to use a spent output,
the corresponding key image would be present in KIT and
the non-membership proof in S5 would fail.

(iv) Steps S6, S7, S8 prove that the coins tied to the one-time
address 𝑃𝑖 𝑗 are used at most once to contribute to the ex-
change’s reserves, thus satisfying requirement R4.

7



Thakore et al.

• Suppose an exchange attempts to use the same output
twice, in steps 𝑗1 and 𝑗2 where 𝑗2 > 𝑗1.

• It would have to repeat the private key 𝑥 to satisfy the
membership proof in step S3.

• The leaf𝐻𝑝𝑜𝑠 (𝑥 ∥bh) would be inserted into the double
spend tree in substep S8 of step 𝑗1 to get DST𝑗1 .

• Then the non-membership proof of 𝐻𝑝𝑜𝑠 (𝑥 ∥bh) in
DST𝑗2−1 would fail in substep S7 of the later step 𝑗2.

7.3.2 Motivating the Step Function Structure. In this subsection, we
justify our choices for the various data structures and computations
used to specify the step function.

(i) We chose the TXOT to have leaves of the form
𝐻𝑝𝑜𝑠

(
𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻𝑝 (𝑃𝑖 𝑗 )

)
. It may not be clear why we chose

to concatenate 𝐶𝑖 𝑗 and 𝐻𝑝 (𝑃𝑖 𝑗 ) with 𝑃𝑖 𝑗 .
• The reason for including 𝐶𝑖 𝑗 in the leaf is to enforce

a copy constraint. We want to ensure that only the
commitment𝐶𝑖 𝑗 tied to 𝑃𝑖 𝑗 contributes to the reserves
in step 𝑗 . It is possible for users to know the amounts
and blinding factors of commitments tied to one-time
addresses they do not own (see Section 2.3). We want
to avoid situations where commitments not owned by
the exchange are used to generate its reserves.

• The point 𝐻𝑝 (𝑃𝑖 𝑗 ) is included in the leaf to reduce the
number of R1CS constraints needed to specify the step
function 𝐹 . If it were not included, then the exchange
would have to calculate the hash of 𝑃𝑖 𝑗 in the step
function. This hash involves the Keccak hash function
[9], which requires a large number of R1CS constraints.

(ii) We chose to insert leaves of the form 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ∥bh) into
the DST to prevent an exchange from using an owned out-
put more than once. Such behavior could also be possibly
prevented by inserting any one of 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 ), 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ) or
𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥bh) into the DST.
• The problem with using 𝐻 (𝑃𝑖 𝑗 ) or 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥bh) as

leaves to the DST is that an adversary could try com-
binations of outputs to reconstruct the set of owned
outputs from the public root hash of the DST. This at-
tack is feasible for small 𝑛 as the number of outputs on
the Monero blockchain is less than 100 million [48, 51].

• The problem with using 𝐻 (𝑥𝑖 𝑗 ) as leaves to the DST
is that the public root hash of the DST would remain
the same if the exchange uses the same set of outputs
to generate its reserves at different block heights. This
leaks information about the asset strategy of the ex-
change.

(iii) In substep S10 of step 𝑗 , the Pedersen commitment to the
accumulated reserves 𝐶𝑟𝑒𝑠

𝑗
is blinded using a random point

𝐶𝑟𝑎𝑛𝑑
𝑗

. The point 𝐶𝑟𝑎𝑛𝑑
𝑗

is chosen to have the form 𝑟 𝑗𝐺

to ensure that the amount being contributed by 𝐶𝑖 𝑗 is un-
changed (see Section 2.3). If this blinding point were not
present and the accumulated reserves were simply calcu-
lated as 𝐶𝑟𝑒𝑠

𝑗
= 𝐶𝑟𝑒𝑠

𝑗−1 + 𝐶𝑖 𝑗 , then an adversary could try
combinations of commitments to reconstruct the set of
owned outputs from the public output 𝐶𝑟𝑒𝑠𝑛 .

8 PROTOCOL FOR PROVING
NON-COLLUSION

We propose a protocol for proving non-collusion between a pair
of exchanges that leverages Nova to achieve constant verification
time. The proof of non-collusion is publicly-verifiable in the sense
that regular users can check the proof. The users need to download
the root hashes of the DSTs from a pair of exchanges and a constant-
sized Nova proof. For this protocol to work, the exchanges need
to generate their respective MProve-Nova proofs (which contains
their DSTs) at the same block height bh.

To generate a proof of non-collusion, one of the exchanges will
have to share values 𝐻𝑝𝑜𝑠 (𝑥𝑖 𝑗 | |bh) which were inserted into the
DST in step 𝑗 of the PoR protocol with the other exchange. We
argue in Section 9.2, that this does not affect the exchange’s privacy,
except for revealing the number of outputs it used to generate the
MProve-Nova proof.

Suppose two exchanges Ex1 and Ex2, that have generatedMProve-
Nova proofs of reserves at the same blockheight bh, want to prove
that they have not colluded. They want to prove that they have not
used any common outputs to contribute to their respective reserves.
Consider the following notation:

(i) Let 𝑛1 and 𝑛2 be the number of owned outputs of Ex1 and
Ex2, respectively.

(ii) Let DSTEx1𝑛1 and DSTEx2𝑛2 be the double spend trees obtained
by the exchanges at the end of their MProve-Nova proof
procedures.

(iii) Let 𝑣 (1)1 , 𝑣
(1)
2 , . . . , 𝑣

(1)
𝑛1 be the leaves of DSTEx1𝑛1 and

𝑣
(2)
1 , 𝑣

(2)
2 , . . . , 𝑣

(2)
𝑛2 be the leaves of DSTEx2𝑛2 .

(iv) Note that 𝑣 (1)
𝑗

= 𝐻𝑝𝑜𝑠

(
𝑥
(1)
𝑗
∥bh

)
for 𝑗 = 1, 2, . . . , 𝑛1 and

𝑣
(2)
𝑗

= 𝐻𝑝𝑜𝑠

(
𝑥
(2)
𝑗
∥bh

)
for 𝑗 = 1, 2, . . . , 𝑛2, where the 𝑥

(1)
𝑗

s

and 𝑥
(2)
𝑗

s are the private keys owned by Ex1 and Ex2, re-
spectively.

The non-collusion protocol requires Ex2 to share the leaves
𝑣
(2)
1 , 𝑣

(2)
2 , . . . , 𝑣

(2)
𝑛2 of its double spend tree with Ex1. The Nova step

function 𝐹𝑛𝑐 for the non-collusion protocol will be run by Ex1
for 𝑛1 steps. The roles of Ex1 and Ex2 can be interchanged, but
then Ex1 will have to share the leaves of its double spend tree with
Ex2. In our protocol description, we assume that Ex1 generates the
non-collusion proof.

The protocol requires an indexed Merkle tree called the output
inclusion tree OIT. It is initially empty and is later populated with
the leaves of Ex1’s double spend tree DSTEx1𝑛1 . Let OIT𝑗−1 and OIT𝑗
denote the state of the output inclusion tree before and after the
𝑗th step, respectively.

The role of the OIT is to enforce a constraint on the outputs,
similar to the role of the double spend tree DST in the PoR protocol.
While the DST ensures that an exchange does not use an output
twice while proving its reserves, the OIT ensures that Ex1 uses the
same outputs in the PoR protocol and the non-collusion protocol.

Consider the scenario where Ex1 and Ex2 used the same output
(𝑃,𝐶) to generate their respective MProve-Nova proofs. At the 𝑗th
step of the non-collusion protocol, the leaf 𝑣 (1)

𝑗
is inserted into the

tree OIT𝑗−1. After 𝑛1 steps, the root hash of OIT𝑛1 is checked to
8



MProve-Nova

𝐹𝑛𝑐

DSTEx1𝑛1 root
DSTEx2𝑛2 root
OIT𝑗−1 root



DSTEx1𝑛1 root
DSTEx2𝑛2 root
OIT𝑗 root



Merkle proofs corresponding to 𝑣 (1)
𝑗

Figure 3: Step Function for Non-Collusion protocol

be equal to the root hash of DSTEx1𝑛1 . This equality ensures that all
the outputs Ex1 used to generate its PoR proof were included while
generating the non-collusion proof. Without this check, Ex1 could
run the non-collusion protocol for 𝑛1 − 1 steps and exclude the
shared output (𝑃,𝐶).

Checking for equality between the root hashes of OIT𝑛1 and
DSTEx1𝑛1 also ensures that Ex1 does not use invalid leaves 𝑣 (1)

𝑗
while

proving non-collusion. Invalid leaves were not possible in the PoR
protocol because we checked membership of the corresponding
outputs in the transaction outputs tree and non-membership of
their key images in the key images tree. The non-collusion protocol
can avoid repeating these validity checks by simply checking that
the root hashes of OIT𝑛1 and DSTEx1𝑛1 are equal.

8.1 Step Function Inputs and Outputs
In this section, we will explain the inputs and outputs of the step
function for the non-collusion protocol, as shown in Figure 3. It
takes the following as public inputs 𝑧 𝑗−1 in step 𝑗 :

(i) The root hashes of the double spend trees DSTEx1𝑛1 and
DSTEx2𝑛2 .

(ii) The root hash of OIT𝑗−1, the output inclusion tree before
step 𝑗 .

The public outputs 𝑧 𝑗 of 𝐹𝑛𝑐 in step 𝑗 are the following:

(i) The root hashes of the double spend trees DSTEx1𝑛1 and
DSTEx2𝑛2 .

(ii) The root hash of OIT𝑗 , the output inclusion tree after step
𝑗 .

The step function 𝐹𝑛𝑐 also takes the following as private inputs
𝑤 𝑗−1 in step 𝑗 :

(i) A Merkle proof to prove the membership of the leaf 𝑣 (1)
𝑗

in
DSTEx1𝑛1 .

(ii) A second Merkle proof to prove non-membership of 𝑣 (1)
𝑗

in DSTEx2𝑛2 .
(iii) A third Merkle proof to prove the non-membership of the

leaf 𝑣 (1)
𝑗

in OIT𝑗−1.
(iv) A fourth Merkle proof in OIT𝑗−1 to aid the insertion of the

leaf 𝑣 (1)
𝑗

into it.

Algorithm 2: Overview of non-collusion protocol
Input : Public input 𝑧0 and private inputs

{𝑤0,𝑤1, · · · ,𝑤𝑛1−1}
Output : Public output after 𝑛1 steps 𝑧𝑛1

1 foreach j ∈ {1, 2, · · · , 𝑛1} do
2 Prove membership of 𝑣 (1)

𝑗
in DSTEx1𝑛1

3 Prove non-membership of 𝑣 (1)
𝑗

in DSTEx2𝑛2

4 Prove non-membership of 𝑣 (1)
𝑗

in OIT𝑗−1

5 Insert 𝑣 (1)
𝑗

in OIT𝑗−1
6 end
7 Check that root hash of OIT𝑛1 equals root hash of DSTEx1𝑛1

8.2 Step Function Computation
Algorithm 2 gives a high level overview of non-collusion protocol.
For 𝑗 ∈ {1, .., 𝑛1}, in step 𝑗 , function 𝐹𝑛𝑐 executes the following
substeps:

S1. Using the first private Merkle path input, it proves the
membership of 𝑣 (1)

𝑗
in DSTEx1𝑛1 .

S2. Using the second private Merkle path input, it proves the
non-membership of 𝑣 (1)

𝑗
in DSTEx2𝑛2 .

S3. Using the third private Merkle path input, it proves the
non-membership of 𝑣 (1)

𝑗
in OIT𝑗−1.

S4. Using the fourth private Merkle path input, it inserts 𝑣 (1)
𝑗

into OIT𝑗−1 to obtain the root hash of the new tree state
OIT𝑗 .

After step 𝑛1, the root hash of OIT𝑛1 is checked to be equal to the
root hash of DSTEx1𝑛1 .

8.3 Motivating the Step Function Structure
The motivation for the different substeps in 𝐹𝑛𝑐 is as follows:

(i) Steps S1 and S2 prove that an output used by Ex1 is not
used by Ex2.

(ii) Steps S3 and S4 prove that the output 𝑣 (1)
𝑗

is distinct from

𝑣
(1)
1 , 𝑣

(1)
2 , . . . , 𝑣

(1)
𝑗−1.

9



Thakore et al.

9 SECURITY PROPERTIES
In this section, we discuss the security properties of MProve-Nova
and non-collusion protocols. We model computationally bounded
entities as probabilistic polynomial-time (PPT) algorithms.

9.1 Security Properties of MProve-Nova
The MProve-Nova PoR protocol has three properties. It is inflation
resistant, preserves exchange privacy and it is collusion resistant.
We will now analyze each of these properties.

9.1.1 Inflation Resistance. The inflation resistance property pre-
vents a PPT exchange from creating a commitment to an amount
which is greater than its total reserves. At each step 𝑗 of the pro-
tocol, the exchange is allowed to accumulate the commitment 𝐶𝑖 𝑗
into the total commitment 𝐶𝑟𝑒𝑠

𝑗
if and only if

(i) it knows the private key corresponding to 𝑃𝑖 𝑗 ,
(ii) the output corresponding to (𝑃𝑖 𝑗 ,𝐶𝑖 𝑗 ) is unspent, and
(iii) the output corresponding to (𝑃𝑖 𝑗 ,𝐶𝑖 𝑗 ) has not been used by

the exchange before.
These properties are enforced by the circuit of Nova step compu-
tation described in Section 7. We rely on knowledge soundness of
Nova and the discrete log assumption. Since Nova is knowledge
sound and these properties are enforced inside circuit, a PPT ex-
change cannot commit to an amount which is greater than its total
reserves and submit a proof such that it is accepted by the Nova
verifier.

9.1.2 Exchange Privacy. The exchange privacy property prevents
a PPT adversary from identifying the Monero outputs which the
exchange used to generate the proof of reserves. In the PoR protocol,
the exchange produces an IVC proof Π𝑛 that attests to the correct
execution of steps 1, ..., 𝑛. Then the exchange uses the prover P𝑧𝑘
to produce a proof 𝜋 to show that it knows a valid IVC proof Π𝑛
for the statement (𝑧0, 𝑧𝑛), where 𝑧0 is the initial public input and
𝑧𝑛 is the public output after the 𝑛th step. The proof 𝜋 is submitted
to the verifier or customer along with the statement (𝑧0, 𝑧𝑛). As
described in Section 6, the proof 𝜋 is zero-knowledge and it reveals
nothing about the exchange’s private inputs to the protocol.

The initial input 𝑧0 is independent of the exchange’s private
inputs and thus reveals nothing about the exchange’s private inputs.
The final output of the protocol 𝑧𝑛 depends on the exchange’s
private inputs as

𝑧𝑛 = 𝐹 (𝐹 (. . . 𝐹 (𝐹 (𝐹 (𝑧0,𝑤0) ,𝑤1) ,𝑤2) , . . .) ,𝑤𝑛−1) .

We need to show that the output 𝑧𝑛 does not reveal any information
about the exchange’s private input. The output 𝑧𝑛 after 𝑛 steps is
as follows:

𝑧𝑛 = [bh, TXOT root, KIT root, DST𝑛 root, 𝐶𝑟𝑒𝑠𝑛 ]

The block height bh, root hash of TXOT and root hash of KIT are
computed using public data available on theMonero blockchain and
reveal no information about the exchange’s private input. The root
hash of DST𝑛 is computed using exchange’s private input. Using
the random oracle assumption, the root hash will be distributed
uniformly and revealing it does not reveal any information about
the exchange’s private input. Finally, the Pedersen commitment to
total reserves𝐶𝑟𝑒𝑠𝑛 is perfectly hiding which also does not reveal any

information about the exchange’s private input. Thus, the verifier
or customer given the proof 𝜋 and the statement (𝑧0, 𝑧𝑛) learns
nothing about the exchange’s private input.

9.1.3 Collusion Resistant. The collusion resistance property pre-
vents two exchanges from colluding to generate the proof of re-
serves. The output of the MProve-Nova PoR can be used as input
to a protocol for proving non-collusion. This property follows from
the construction of our non-collusion protocol. The protocol guar-
antees to detect collusion provided that the two exchanges giving
the proof of non-collusion have generated the proof of reserves at
the same blockheight.

9.2 Security Properties of Non-Collusion
protocol

In this section, we will analyze the exchange privacy property of
the non-collusion protocol.

9.2.1 Exchange Privacy. Suppose two exchanges Ex1 and Ex2 have
generated the proof of reserves for the same blockheight bh and
Ex1 wants to prove non-collusion with Ex2. As described in Section

8, Ex2 will have to share the values
[
𝑣
(2)
𝑗

] 𝑗=𝑛2
𝑗=1

which were inserted

in its DSTEx2 with Ex1. Ex1 will run the non-collusion protocol for
𝑛1 steps and submit the proof 𝜋 along with the statement (𝑧0, 𝑧𝑛1 )
to the verifier or customer. The proof 𝜋 is zero-knowledge and
does not reveal any information about the private input of Ex1. The
initial input 𝑧0 is independent of private input of Ex1. The output
𝑧𝑛1 after 𝑛1 steps is as follows:

𝑧𝑛1 = [DSTEx1𝑛1 root, DSTEx2𝑛2 root, OIT𝑛1 root]

The root hash of DSTEx2𝑛2 does not depend on private input of Ex1.
Using the random oracle assumption, the root hashes of DSTEx1𝑛1
and OIT𝑛1 will be distributed uniformly and do not reveal any
information about the private input of Ex1. Thus the protocol has
no effect on the privacy of the exchange proving non-collusion
i.e. Ex1.

Ex2 has to reveal the values
[
𝑣
(2)
𝑗

] 𝑗=𝑛2
𝑗=1

to Ex1 so that Ex1 can

run the non-collusion protocol. Since 𝑣 (2)
𝑗

= 𝐻𝑝𝑜𝑠

(
𝑥
(2)
𝑗
∥bh

)
, using

the random oracle assumption 𝑣
(2)
𝑗

will be distributed uniformly
and do not reveal any information about the private input of Ex2
except the number of outputs owned by Ex2 i.e. 𝑛2.

10 IMPLEMENTATION AND PERFORMANCE
We have implemented the MProve-Nova PoR protocol and the pro-
tocol for proving non-collusion using our modified implementation
of Nova. The implementation uses Pasta curves [52], a 2-cycle of
elliptic curves and the Posiedon hash function [22, 29]. A detailed
explanation of Nova using 2-cycle of elliptic curves and a security
fix in the implementation was given by Nguyen et al. [39]. The
Nova implementation accepts the step computation 𝐹 , as a bellpep-
per gadget [30]. The bellpepper gadgets required to implement
MProve-Nova were described in Section 4.

In this section, we present the performance of the MProve-Nova
PoR protocols. All simulations were run on a 64 core 2.30GHz In-
tel Xeon Gold 6314U CPU with access to 125GB RAM. Table 1

10



MProve-Nova

Table 1: Performance comparison of PoR protocols. 𝑛 = |P𝑜𝑤𝑛 |, PT denotes proving time, VT denotes verification time and PS
denotes proof size with units in parentheses. Values with a * are estimated values due to simulation running out of memory.

MProve-Nova MProve+ MProve
𝑛 PT(Hrs) VT(s) PS(KB) PT(Hrs) VT(s) PS(KB) PT(s) VT(s) PS(MB)

1,000 0.66 4.54 27.37 2.49 959.05 162.62 99.32 17.36 37.44
3,000 1.99 4.50 27.36 7.46* 2887.54* 482.81* 100.19 17.33 37.44
5,000 3.36 4.53 27.37 12.44* 4817.22* 803.02* 100.21 17.37 37.44
7,000 4.75 4.57 27.36 17.41* 6746.34* 1123.2* 100.27 17.48 37.44
10,000 6.94 4.48 27.36 24.88* 9640.44* 1603.5* 100.19 17.34 37.44
15,000 10.92 4.47 27.36 37.32* 14463.939* 2404* 100.39 17.35 37.44
20,000 15.20 4.41 27.36 49.76* 19287.439* 3204.5* 100.36 17.33 37.44

shows comparison between MProve-Nova, MProve+, and MProve
for PoR generation/verification. The open source implementations
of MProve+ [7] and MProve [6] were used to perform the simula-
tions. Our implementation of MProve-Nova is available on anony-
mous Github [38].

The computation times and proof sizes of MProve+ and MProve
increase linearly in the size of the anonymity set. All simulations for
MProve+ and MProve were run for an anonymity set of 45,000 one-
time addresses, whereas for MProve-Nova the anonymity set is the
set of all one-time addresses on the Monero blockchain. Thus the
comparison is unfair towards MProve-Nova since for an anonymity
set of all the one-time addresses, MProve+ and MProve will be
impractical. However, despite this, MProve-Nova gives practical
results and performs better in terms of verification times and proof
sizes.

For MProve-Nova, the proving time is linear in the number of
owned one-time addresses, while the proof verification times and
proof sizes are constant. The proving time for 10,000 owned ad-
dresses is about 7 hours. The verification time and proof size are
constant at about 4.5 s and 27 KB, respectively. The performance
results are practical since an exchange with up to 10,000 owned
addresses can generate proofs every 12 Hrs and an exchange with
up to 20,000 owned addresses can generate proofs every 24 Hrs.

MProve-Nova has smaller proof sizes and faster verification
time as compared to both MProve+ and MProve. MProve-Nova has
higher proving time compared to MProve but it provides better
privacy to the exchange which is not the case with MProve.

Table 2 shows the performance of the non-collusion protocol. In
all cases, the proof size is 23 KB and proof verification time is about
219 ms.

11 CONCLUSION
We described MProve-Nova, the first privacy-preserving proof of
reserves for Monero which also enables proofs of non-collusion
between exchanges. We compared MProve-Nova with MProve+
and MProve to show that our protocol has practical computation
times and proof size along with better privacy.

For MProve-Nova, the proving time for 10,000 owned addresses
is about 7 hours. It achieves verification times of about 4.5 seconds
and proof sizes of 27 KB, irrespective of the size of the anonymity
set. Our goal with the performance evaluation is to provide an
upperbound on the computation times since they can be further

Table 2: Performance of Proof of Non-Collusion. 𝑛1 denotes
the number of values inserted by exchange Ex1 in its double
spend tree DSTEx1

𝑛1 Proving Time Verification Time Proof Size
1,000 359.66 s 209.30 ms 23.18 KB
3,000 1165.06 s 222.85 ms 23.18 KB
5,000 2373.40 s 219.54 ms 23.18 KB
7,000 3944.93 s 231.37 ms 23.18 KB
10,000 6407.71 s 218.58 ms 23.18 KB
15,000 12423.20 s 234.17 ms 23.18 KB
20,000 19824.15 s 246.92 ms 23.18 KB

reduced using GPU acceleration or using non-uniform IVC schemes
like SuperNova [26].

The non-collusion protocol reveals the number of outputs owned
by the exchangewhich shares the values inserted in its double spend
tree with the other exchange. The construction of a non-collusion
protocol using multi-party computation techniques in which the
exchanges do not reveal any information to each other and prove
non-collusion such that the proof is publicly-verifiable is a direction
for future work.

The MProve-Nova protocol does not construct the transactions
output tree and key image tree inside a circuit. It works with the
assumption that the tree roots which are input to the protocol are
valid. Any deviation from the correct values for the tree roots can
be detected by anyone with a copy of the Monero blockchain. The
verification of the validity of these tree roots inside an R1CS circuit
from Monero blockchain data is a challenging direction for future
work.

REFERENCES
[1] 0xPARC. 2021. circom-ecdsa: Implementation of ECDSA operations in circom.

https://github.com/0xPARC/circom-ecdsa
[2] Zachary Amsden and et al. 2020. The Libra Blockchain. https://diem-developers-

components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
[3] Sebastian Angel. 2023. Nova Implementation with Zero-knowledge. https:

//github.com/sga001/Nova
[4] Sebastian Angel, Eleftherios Ioannidis, Elizabeth Margolin, Srinath Setty, and Jess

Woods. 2023. Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs.
Cryptology ePrint Archive, Paper 2023/1886. https://eprint.iacr.org/2023/1886
https://eprint.iacr.org/2023/1886.

[5] Aztec. 2023. Indexed Merkle Tree. https://docs.aztec.network/aztec/protocol/
trees/indexed-merkle-tree

[6] Suyash Bagad. 2020. Implementation of MProve. https://github.com/suyash67/
MProve-Ristretto

11

https://github.com/0xPARC/circom-ecdsa
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://github.com/sga001/Nova
https://github.com/sga001/Nova
https://eprint.iacr.org/2023/1886
https://eprint.iacr.org/2023/1886
https://docs.aztec.network/aztec/protocol/trees/indexed-merkle-tree
https://docs.aztec.network/aztec/protocol/trees/indexed-merkle-tree
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProve-Ristretto


Thakore et al.

[7] Suyash Bagad. 2021. Implementation of MProve+. https://github.com/suyash67/
MProvePlus-Ristretto

[8] Foteini Baldimtsi, Panagiotis Chatzigiannis, S. Gordon, Phi Le, and Daniel
McVicker. 2022. gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from
MPC in the Head, with Application to Proofs of Assets in Cryptocurren-
cies. Proceedings on Privacy Enhancing Technologies (2022), 229–249. https:
//doi.org/10.56553/popets-2022-0107

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2014. The
making of KECCAK. Cryptologia 38, 1 (2014), 26–60. https://doi.org/10.1080/
01611194.2013.856818

[10] Nalin Bhardwaj. 2022. Nova Scotia: Middleware to compile Circom circuits to
Nova prover. https://github.com/nalinbhardwaj/Nova-Scotia

[11] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.
2022. ConsenSys/gnark: v0.7.0. https://doi.org/10.5281/zenodo.5819104

[12] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bul-
letproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE
Symposium on Security and Privacy (IEEE S&P). 315–334. https://doi.org/10.1109/
SP.2018.00020

[13] ChainSec. 2023. The Complete List of Crypto Exchange Hacks - ChainSec —
chainsec.io. https://chainsec.io/exchange-hacks/

[14] Konstantinos Chalkias, Panagiotis Chatzigiannis, and Yan Ji. 2022. Broken Proofs
of Solvency in Blockchain Custodial Wallets and Exchanges. Cryptology ePrint
Archive, Paper 2022/043. https://eprint.iacr.org/2022/043

[15] Konstantinos Chalkias, Kevin Lewi, Payman Mohassel, and Valeria Nikolaenko.
2020. Distributed Auditing Proofs of Liabilities. Cryptology ePrint Archive,
Paper 2020/468. https://eprint.iacr.org/2020/468

[16] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021.
SoK: Auditability and Accountability in Distributed Payment Systems. Cryptol-
ogy ePrint Archive, Paper 2021/239. https://eprint.iacr.org/2021/239

[17] Panagiotis Chatzigiannis and Konstantinos Chalkias. 2021. Proof of Assets in
the Diem Blockchain. In Applied Cryptography and Network Security Workshops:
ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI,
SecMT, and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings (Kamakura,
Japan). Springer-Verlag, Berlin, Heidelberg, 27–41. https://doi.org/10.1007/978-
3-030-81645-2_3

[18] Consensys. 2020. Implementation of gnark emulated package. https://github.
com/Consensys/gnark/tree/master/std/math/emulated

[19] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh.
2015. Provisions: Privacy-Preserving Proofs of Solvency for Bitcoin Exchanges.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Ma-
chinery, New York, NY, USA, 720–731. https://doi.org/10.1145/2810103.2813674

[20] Arijit Dutta, Suyash Bagad, and Saravanan Vijayakumaran. 2021. MProve+:
Privacy Enhancing Proof of Reserves Protocol for Monero. IEEE Transactions on
Information Forensics and Security 16 (2021), 3900–3915. https://doi.org/10.1109/
TIFS.2021.3088035

[21] Arijit Dutta and Saravanan Vijayakumaran. 2019. MProve: A Proof of Reserves
Protocol for Monero Exchanges. In 2019 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). 330–339. https://doi.org/10.1109/EuroSPW.
2019.00043

[22] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 519–535. https://www.usenix.org/conference/usenixsecurity21/
presentation/grassi

[23] iden3. 2024. Circom circuit compiler. https://github.com/iden3/circom
[24] Yan Ji and Konstantinos Chalkias. 2021. Generalized Proof of Liabilities. In

Proceedings of the 2021 ACM SIGSACConference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 3465–3486. https://doi.org/10.1145/3460120.
3484802

[25] Koe, Kurt M. Alonso, and Sarang Noether. 2020. Zero to Monero: Second Edition.
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

[26] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal
machine executions without universal circuits. Cryptology ePrint Archive, Paper
2022/1758. https://eprint.iacr.org/2022/1758

[27] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes. In Advances in Cryptology –
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV (Santa Barbara,
CA, USA). Springer-Verlag, Berlin, Heidelberg, 359–388. https://doi.org/10.1007/
978-3-031-15985-5_13

[28] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. 2017. A
Traceability Analysis of Monero’s Blockchain. In Computer Security – ESORICS
2017, Simon N. Foley, Dieter Gollmann, and Einar Snekkenes (Eds.). Springer
International Publishing, Cham, 153–173. https://doi.org/10.1007/978-3-319-
66399-9_9

[29] Lurk Lab. 2020. neptune : Implementation of the Poseidon hash function. https:
//github.com/lurk-lab/neptune

[30] Lurk Lab. 2023. bellpepper : Rust Library for R1CS circuits. https://github.com/
lurk-lab/bellpepper

[31] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Ar-
avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling Private
Payments Without Trusted Setup. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 31–48.
https://doi.org/10.1145/3319535.3345655

[32] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. 2004. Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups. In Information Security and
Privacy, Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 325–335. https://doi.org/10.1007/978-3-
540-27800-9_28

[33] Microsoft. 2021. Nova Implementation. https://github.com/microsoft/Nova
[34] Microsoft. 2023. Zero-knowledge implementation gap in Nova. https://github.

com/microsoft/Nova/issues/174
[35] Monero. 2024. The Monero Project. https://www.getmonero.org/
[36] MoneroSchedule 2020. Monero Scheduled Software Upgrades. https://github.

com/monero-project/monero/#scheduled-software-upgrades Last Accessed:
August 13, 2023.

[37] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat
Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,
and Nicolas Christin. 2018. An Empirical Analysis of Traceability in the Monero
Blockchain. Proceedings on Privacy Enhancing Technologies (2018), 143–163.
https://doi.org/10.1515/popets-2018-0025

[38] MProve Nova. 2024. Implementation of MProve-Nova. https://anonymous.
4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/
README.md

[39] Wilson Nguyen, Dan Boneh, and Srinath Setty. 2023. Revisiting the Nova Proof
System on a Cycle of Curves. Cryptology ePrint Archive, Paper 2023/969. https:
//eprint.iacr.org/2023/969

[40] Shen Noether, Adam Mackenzie, and The Lab. 2016. Ring Confidential Transac-
tions. Ledger 1 (12 2016), 1–18. https://doi.org/10.5195/LEDGER.2016.34

[41] Torben Pryds Pedersen. 1992. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In Advances in Cryptology — CRYPTO ’91. Springer,
129–140. https://doi.org/10.1007/3-540-46766-1_9

[42] Elements Project. 2018. Proof-of-Reserves tool for Bitcoin. https://github.com/
ElementsProject/reserves

[43] Steven Roose. 2019. Standardizing Bitcoin Proof of Reserves. https://blog.
blockstream.com/en-standardizing-bitcoin-proof-of-reserves/

[44] Stoffu Noether. 2018. Reserve Proof Pull Request. https://github.com/monero-
project/monero/pull/3027

[45] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. 2022. Trans-
parency Dictionaries with Succinct Proofs of Correct Operation. ISOC Con-
ference on Network and Distributed System Security (NDSS) (2022). https:
//doi.org/10.14722/ndss.2022.23143

[46] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency. In Proceedings of the 5th Conference on Theory of
Cryptography (New York, USA) (TCC’08). Springer-Verlag, Berlin, Heidelberg,
1–18. https://doi.org/10.1007/978-3-540-78524-8_1

[47] Nicolas van Saberhagen. 2013. CryptoNote v 2.0. https://bytecoin.org/old/
whitepaper.pdf

[48] Saravanan Vijayakumaran. 2023. Analysis of CryptoNote Transaction Graphs
Using the Dulmage-Mendelsohn Decomposition. In 5th Conference on Advances
in Financial Technologies (AFT 2023), Vol. 282. 28:1–28:22. https://doi.org/10.
4230/LIPIcs.AFT.2023.28

[49] Wikipedia. 2023. FTX —Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/wiki/FTX

[50] Wikipedia. 2023. Mt. Gox — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/wiki/Mt._Gox

[51] Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat
Lau. 2019. New Empirical Traceability Analysis of CryptoNote-Style Blockchains.
In Financial Cryptography and Data Security. 133–149. https://doi.org/10.1007/
978-3-030-32101-7_9

[52] Zcash. 2020. Pasta curves. https://github.com/zcash/pasta
[53] zkcrypto. 2015. bellman : Rust Library for R1CS circuits. https://github.com/

zkcrypto/bellman

12

https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://doi.org/10.56553/popets-2022-0107
https://doi.org/10.56553/popets-2022-0107
https://doi.org/10.1080/01611194.2013.856818
https://doi.org/10.1080/01611194.2013.856818
https://github.com/nalinbhardwaj/Nova-Scotia
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://chainsec.io/exchange-hacks/
https://eprint.iacr.org/2022/043
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2021/239
https://doi.org/10.1007/978-3-030-81645-2_3
https://doi.org/10.1007/978-3-030-81645-2_3
https://github.com/Consensys/gnark/tree/master/std/math/emulated
https://github.com/Consensys/gnark/tree/master/std/math/emulated
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1109/TIFS.2021.3088035
https://doi.org/10.1109/TIFS.2021.3088035
https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1109/EuroSPW.2019.00043
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://github.com/iden3/circom
https://doi.org/10.1145/3460120.3484802
https://doi.org/10.1145/3460120.3484802
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/bellpepper
https://github.com/lurk-lab/bellpepper
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://github.com/microsoft/Nova
https://github.com/microsoft/Nova/issues/174
https://github.com/microsoft/Nova/issues/174
https://www.getmonero.org/
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://doi.org/10.1515/popets-2018-0025
https://anonymous.4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md
https://anonymous.4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md
https://anonymous.4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md
https://eprint.iacr.org/2023/969
https://eprint.iacr.org/2023/969
https://doi.org/10.5195/LEDGER.2016.34
https://doi.org/10.1007/3-540-46766-1_9
https://github.com/ElementsProject/reserves
https://github.com/ElementsProject/reserves
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://github.com/monero-project/monero/pull/3027
https://github.com/monero-project/monero/pull/3027
https://doi.org/10.14722/ndss.2022.23143
https://doi.org/10.14722/ndss.2022.23143
https://doi.org/10.1007/978-3-540-78524-8_1
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://en.wikipedia.org/wiki/FTX
https://en.wikipedia.org/wiki/FTX
https://en.wikipedia.org/wiki/Mt._Gox
https://en.wikipedia.org/wiki/Mt._Gox
https://doi.org/10.1007/978-3-030-32101-7_9
https://doi.org/10.1007/978-3-030-32101-7_9
https://github.com/zcash/pasta
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman

	Abstract
	1 Introduction
	2 Overview of Monero
	2.1 One-Time Addresses
	2.2 Linkable Ring Signatures
	2.3 Pedersen Commitments to Amounts
	2.4 Monero Outputs

	3 Challenges in Designing a Monero PoR Protocol
	4 Our Contributions
	5 Related Work
	6 Nova
	6.1 IVC Scheme
	6.2 zkSNARK of IVC Proof

	7 MProve-Nova PoR Protocol
	7.1 Merkle Trees
	7.2 Step Function Inputs and Outputs
	7.3 Step Function Computation

	8 Protocol for Proving Non-Collusion
	8.1 Step Function Inputs and Outputs
	8.2 Step Function Computation
	8.3 Motivating the Step Function Structure

	9 Security Properties
	9.1 Security Properties of MProve-Nova
	9.2 Security Properties of Non-Collusion protocol

	10 Implementation and Performance
	11 Conclusion
	References

