
MProve-Nova: A Privacy-Preserving Proof of
Reserves Protocol for Monero

A Report of MTech Project - Stage I
Submitted in partial fulfilment of the

requirements for the degree of

Master of Technology
with specialisation in

Communication Engineering

by

Thakore Varun Pragnesh

(Roll No. 213079002)

Under the Supervision of

Prof. Saravanan Vijayakumaran

Department of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Mumbai - 400076, India

October, 2025

Acknowledgements

I would like to express my gratitude to my guide Prof. Saravanan Vijayakumaran for
his invaluable guidance and unwavering support on the project. I am thankful for
his constructive feedback, time devoted to all the discussions and necessary research
direction throughout the project. I also extend my gratitude to Trust Lab for provid-
ing the necessary computation resources required to perform the project simulations.

Varun Thakore

Abstract

We present MProve-Nova, a proof of reserves (PoR) protocol for Monero that lever-
ages the Nova recursive SNARK to achieve two firsts (without requiring any trusted
setup). It is the first privacy-preserving Monero PoR protocol that reveals only the
number of outputs owned by an exchange; it reveals nothing else about the outputs
or their key images. It is the first Monero PoR protocol where the proof size and
proof verification time are constant, i.e. they are independent of the number of out-
puts on the Monero blockchain and the number of outputs owned by the exchange.

In our implementation of MProve-Nova, we observed proof sizes of 12 KB and verifi-
cation times of 2 seconds. Proving times increase linearly with the number of outputs
owned by the exchange (≈ 1 hour per 1,000 outputs) but remain independent of the
number of outputs on the Monero blockchain. We also describe the design and im-
plementation of a Nova-based non-collusion protocol that takes the MProve-Nova
proofs from a pair of exchanges as input and proves that the sets of outputs they
used to generate their respective proofs of reserves are non-overlapping.

Contents

Acknowledgements

Abstract

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Our Contributions . 3
1.3 Related Work . 5
1.4 Report Organization . 7

2 Background 9
2.1 Overview of Monero . 9

2.1.1 One-Time Addresses . 9
2.1.2 Linkable Ring Signatures . 11
2.1.3 Pedersen Commitments to Amounts 12
2.1.4 Monero Outputs . 13

2.2 Challenges in Designing a Monero PoR Protocol 14
2.3 Nova . 17

2.3.1 IVC Scheme . 17
2.3.2 zkSNARK of IVC Proof . 18

3 MProve-Nova PoR and the Non-Collusion Protocol 21
3.1 Introduction . 21
3.2 Merkle Trees . 22
3.3 Step Function Inputs and Outputs 23
3.4 Step Function Computation . 24

3.4.1 Satisfying Monero PoR requirements 26
3.4.2 Motivating the Step Function Structure 27

3.5 Protocol for Proving Non-Collusion 28
3.5.1 Step Function Inputs and Outputs 30
3.5.2 Step Function Computation 30

Contents

3.5.3 Motivating the Step Function Structure 31
3.6 Security Properties of MProve-Nova 31

4 Implementation and Performance 33
4.1 Implementation . 33
4.2 Performance . 33

5 Conclusion 37
5.1 Summary . 37

A Security Properties 39
A.1 Introduction . 39
A.2 Inflation Resistance . 39
A.3 Exchange Privacy . 41

A.3.1 Proof of Reserves . 41
A.3.2 Proof of Non-collusion . 45

A.4 Collusion Resistance . 48

Bibliography 49

Chapter 1

Introduction

1.1 Introduction

Cryptocurrency exchanges provide a user-friendly platform for buying, selling, and

trading of cryptocurrencies. While customers can transfer their coins from exchanges

to non-custodial wallets, many of them prefer to keep their coins on exchanges to

avoid the hassles and risks of managing private keys. This leaves customer funds at

the risk of being stolen from the exchange due to security breaches or internal fraud.

Some examples include the bankruptcy of Mt. Gox [49] and the collapse of FTX [48].

The total funds lost due to exchange hacks alone is estimated to be at least $2.4

billion as of April 2023 [10]. While losses due to security breaches can be avoided

by hardening the protocols involving the exchange’s private keys, internal fraud by

exchange operators cannot be completely prevented. But such fraud can be detected

early (and hence deterred) if exchanges are required to regularly publish proofs of

solvency.

A proof of reserves (PoR) is one half of a proof of solvency protocol, with a proof of

liabilities (PoL) being the other half. A PoR protocol enables an exchange to prove

1

Chapter I. Introduction 2

that it owns a certain amount of a cryptocurrency, i.e. it holds a certain amount

of assets. For this reason, a PoR is sometimes also called a proof of assets. A PoL

protocol enables an exchange to prove that the total amount of assets it is storing on

behalf of all its customers (its liabilities) equals a certain amount. If an exchange’s

assets exceeds its liabilities, it is considered solvent.

In this paper, we focus solely on PoR protocols for Monero [31], a privacy-focused

cryptocurrency based on the CryptoNote protocol [44]. Specifically, we are inter-

ested in publicly-verifiable privacy-preserving PoR protocols. By publicly-verifiable,

we mean that the PoR can be verified by any party, not just a trusted auditor.

By privacy-preserving, we mean that the protocols do not reveal the specific coin

addresses (outputs) owned by the exchange.

Without this privacy requirement, it is trivial to construct a PoR protocol for Mon-

ero. The exchange can generate signatures proving ownership of a set of outputs and

non-membership proofs proving that the outputs have not been spent. The latter

would involve proving that the outputs’ key images1 have not appeared in any past

transaction.

Privacy is especially important in Monero PoR protocols because Monero trans-

actions contain ring signatures, with the output being spent hidden among decoy

outputs sampled from the Monero blockchain. If some outputs are identified as un-

spent outputs belonging to an exchange, they can be marked as decoys in all the

previous transaction rings they appear in. This reduces the effective ring size of

such transactions. The implication is that a non-private Monero PoR protocol can

negatively impact the privacy of other Monero users, in addition to impacting the

privacy of the exchange generating the proof.
1Key images are one-way functions of outputs that are generated as part of the Monero ring

signatures to prevent double spending.

Chapter I. Introduction 3

When the identities of an exchange’s outputs are hidden by a PoR protocol, it opens

up the possibility of collusion between exchanges. Collusion refers to the situation

when the same output is used by two exchanges to generate their respective proofs of

reserves. This is a form of double spending, where one exchange could bribe another

to contribute to the former’s PoR. It is desirable to have privacy-preserving PoR

protocols that are also collusion-resistant.

Finally, a proof of solvency is useless if no one verifies it. So it is desirable to

have PoR/PoL protocols with short proofs that can be verified quickly on personal

computers. This will lower the bar for proof verifiers, make it more likely that

the proofs of reserves are verified by customers, and hence reduce the likelihood of

exchanges in engaging in activities that could render them insolvent.

1.2 Our Contributions

Our contributions are as follows:

1. We describe the design and implementation of MProve-Nova, a publicly-verifiable

privacy-preserving PoR protocol for Monero. Our design is based on Nova [27],

a recursive SNARK that does not require a trusted setup. MProve-Nova has

the following advantages:

(i) It is privacy-preserving in the random oracle model in the sense that it

reveals only the number of exchange-owned outputs. It does not reveal

any other information about the exchange-owned outputs or their key

images. Revealing the number of owned outputs is not a major privacy

concern since a Monero exchange can create outputs with zero-amount

commitments and hide the exact number of asset-bearing outputs.

Chapter I. Introduction 4

(ii) It is the first Monero PoR protocol with constant proof size and proof

verification time i.e. these two metrics are independent of the number of

outputs on the Monero blockchain and the number of outputs owned by

the exchange. It achieves this by leveraging the Nova folding scheme to

fold all the individual statements proving ownership and “unspent-ness”

of each of the exchange-owned outputs into a single statement.

2. We provide a formal analysis of the security properties of MProve-Nova. We

show that it is

(i) inflation resistant, i.e. a computationally bounded exchange cannot gen-

erate an MProve-Nova proof that proves that it owns a number of coins

that is greater than the actual number of coins it owns, and

(ii) privacy-preserving in the random oracle model, except for revealing an

upper bound on the number of exchange-owned outputs.

3. We used the reference implementation of Nova [38] to implement MProve-

Nova in Rust [22]. To leverage Nova, the statements requiring proof need to

be expressed using rank-1 constraint system (R1CS) constraints. While it was

possible to create an R1CS gadget for MProve-Nova using the circom circuit

compiler [16] and the Nova Scotia adapter [39], we chose to implement the

gadget directly using the bellpepper library [6].

To implement the MProve-Nova gadget, we implemented the following com-

ponent gadgets in bellpepper.

(i) Regular and Indexed Merkle trees [23, 45]: While implementations of

regular Merkle trees already existed in bellman [5] (which was forked to

create bellpepper), our implementation of indexed Merkle trees is new.

Chapter I. Introduction 5

(ii) bellpepper-emulated: A gadget for non-native finite field arithmetic in-

spired by the emulated [20] package (written in Go) from the gnark zk-

SNARK library [8]. When the field order is a pseudo-Mersenne prime,

we added limb folding and efficient field membership checks inspired by

techniques from circom-ecdsa [15].

(iii) bellpepper-ed25519: A gadget for Ed25519 elliptic curve operations us-

ing bellperson-emulated. This was needed as Monero uses Ed25519 curve

points for addresses (outputs) and amount commitments.

4. We describe the design, implementation [22], and security properties of a

privacy-preserving protocol for generating a proof of non-collusion between

a pair of exchanges that use MProve-Nova to generate their respective proofs

of reserves. This protocol is also based on Nova, resulting in constant proof

sizes and proof verification times.

1.3 Related Work

Provisions [17], proposed by Dagher et al., is one of the first privacy-preserving proof

of solvency protocol for Bitcoin exchanges. It consists of three sub-protocols: proof of

reserves, proof of liabilities and proof of solvency. In proof of reserves, the exchange

generates a Pedersen commitment [41] Cres to the total assets corresponding to

a subset of owned addresses Pown from a larger anonymity set P . The exchange

submits a proof that it included only those amounts in Cres for which it knows the

private keys corresponding to the addresses in P . In proof of liabilities, the exchange

generates a Pedersen commitment to each bit of the balance amount owned by the

customer. These commitments are combined to calculate the total liabilities Cliabilities

of the exchange. In proof of solvency, the exchange computes Cdiff = Cres−Cliabilities

Chapter I. Introduction 6

and proves that Cdiff commits to a non-negative amount. There is also a fourth

protocol to prove non-collusion but it reveals the number of addresses owned by the

exchange and is presented as an optional protocol. Provisions is specific to Bitcoin

and cannot be applied to privacy-preserving cryptocurrencies such as Monero.

In 2019, Blockstream [43, 42] released a tool to generate proof of reserves which

involves generating an invalid transaction using all the UTXOs of an exchange and

an invalid input so that exchange’s funds are not spent. This technique does not

preserve address privacy since all the UTXOs owned by the exchange are revealed.

Stoffu Noether implemented a technique for generating proof of reserves for Monero

which was added to the official Monero client in 2018 [36]. It takes a target amount as

input and finds the smallest set of addresses owned by the prover whose total amount

exceeds the target amount. Then the set of addresses and their corresponding key

images are revealed as part of the proof of reserves. This technique reveals the

addresses owned by the prover, their corresponding amounts, and their key images.

Dutta et al. [19] proposed MProve, a proof of reserves protocol for Monero ex-

changes. MProve+ [18] was later proposed which enhanced the privacy of MProve

by using techniques from Bulletproofs [9] and Omniring [29]. The details of MProve

and MProve+ with drawbacks have been covered in Section 2.2.

Some notable work on proof of reserves include, gOTzilla [4] proposed by Baldimtsi

et al., which is an interactive zero-knowledge protocol for proving disjunctive state-

ments. Additionally, Chatzigiannis and Chalkias [14] proposed proof of assets for

account-based blockchains such as Diem, formerly known as Libra [1].

There has been significant work in proof of liabilities (PoL), most notable ones

being DAPOL [12] and DAPOL+ [24]. MProve-Nova can be used with DAPOL+

to provide a proof of solvency. Chalkias et al. [11] highlighted vulnerabilities in the

Chapter I. Introduction 7

implementation of PoL used in production. Chatzigiannis et al. [13] evaluated and

systematized several distributed payment systems which offer auditability. Their

work provides a comparison between different proof of assets and proof of liabilities

schemes on the basis of their efficiency and privacy properties.

1.4 Report Organization

This report consists of 5 chapters, including the present chapter (Chapter 1) of

introduction to the project. This chapter covers our contributions and related work.

Chapter 2 provides an overview of Monero and Nova. Chapter 3 describes the

proposed protocol and the security properties. Chapter 4 describes implementation

and performance of the protocol. Chapter 5 summarizes the results and conclusions.

Chapter 2

Background

2.1 Overview of Monero

Monero [31] is the most popular instantiation of the CryptoNote protocol [44], with

additional privacy and efficiency improvements. In Monero transactions, receiver

identities are hidden using one-time addresses, sender identities are obfuscated using

linkable ring signatures, and the number of coins being transferred is hidden using

Pedersen commitments [41].

2.1.1 One-Time Addresses

Monero public keys are points in the prime order subgroup of the Twisted Edwards

elliptic curve Ed25519 [25]. Let G denote this subgroup whose order is a 253-bit

prime l. Monero private keys are integers in the set Z+
l = {1, 2, ..., l − 1}. For the

basepoint G ∈ G, the public key P ∈ G corresponding to a private key x ∈ Z+
l

is denoted by P = xG. We will use additive notation for scalar multiplication

throughout this paper.

9

Chapter II. Background 10

Suppose Alice wants to send some Monero coins to Bob.

1. Bob shares a public key pair (Bvk, Bsk) ∈ G2 with Alice. The subscripts vk

and sk are abbreviations of view key and spend key. Let (bvk, bsk) ∈ Z+
l × Z+

l

denote the corresponding private key pair.

2. She signs a transaction transferring coins she owns to Bob. This transaction

will contain a one-time address P that will be controlled by Bob and a random

point R.

3. Alice creates the one-time address P as follows:

(i) She chooses a random scalar r ∈ Z+
l .

(ii) She computes the one-time address as

P = H(rBvk∥oindex)G+Bsk

where ∥ denotes concatenation, H : {0, 1}∗ 7→ Z+
l is a cryptographic hash

function, and oindex is the index of the new output (to be defined later) in

the transaction.1 Note that the private key corresponding to P is known

only to Bob as it equals x = H(rBvk∥oindex)G+ bsk where Bsk = bskG.

4. Alice computes the random point R as rG.

5. Alice broadcasts the transaction containing (P,R), which will be eventually

included in a Monero block by miners.

6. Bob identifies transactions transferring coins to him as follows:

(i) For every new Monero block, Bob reads the point pairs (P,R) in all the

transactions.
1The output index is included to allow the creation of distinct one-time addresses from the same

public key pair in the same transaction.

Chapter II. Background 11

(ii) He computes the point P ′ = H(bvkR∥oindex)G+Bsk.

(iii) If P ′ = P , Bob concludes that the transaction is sending coins to him.

7. Bob adds P to the list of one-time addresses owned by him.

Note that Bob will always be able to identify transactions meant for him as rBvk =

rbvkG = bvkR. This is nothing but a Diffie-Hellman shared secret between public

keys R and Bvk.

One-time addresses generated using Bob’s public key pair cannot be linked to his

key pair as long as the decisional Diffie-Hellman (DDH) problem remains hard in

Ed25519. In this way, Monero hides the receiver’s identity in a transaction.

2.1.2 Linkable Ring Signatures

Monero uses linkable ring signatures [30, 37] to obfuscate sender identities, while

preventing double spending. Given a list of public keys, a ring signature allows a

signer to prove that he knows the private key of one public key from the list without

revealing which one. A linkable ring signature allows an observer to link multiple

ring signatures generated using the same private key.

Suppose Bob wants to spend the coins tied to a one-time address P he owns, i.e. he

knows x ∈ Z+
l such that P = xG. This one-time address is already present on the

Monero blockchain. He proceeds as follows:

1. For a protocol-specified ring size n, Bob randomly samples n − 1 one-time

addresses P1, P2, . . . , Pn−1 (all distinct from P) from the blockchain. These

are called decoy addresses.

Chapter II. Background 12

2. Bob signs the spending transaction using a linkable ring signature on the set of

one-time addresses P = {P1, P2, . . . , Pn−1, P}. This set is sorted in chronolog-

ical order (oldest address first) to prevent the ordering of the keys in P from

leaking the identity of P .

3. Bob includes the linkable ring signature in the transaction he broadcasts to

the Monero P2P network.

Hiding the identity of the spending key opens up the possibility of double spending.

To prevent this, the linkable ring signature contains an Ed25519 point called the key

image, defined as I = xHp(P) where Hp : G 7→ G is a point-valued cryptographic

hash function.

Two linkable ring signatures spending from the same one-time address will have

identical key images. The Monero blockchain maintains the set I of key images that

have appeared in past transactions. If the coins tied to a one-time address P have

already been spent, then its key image I will already be in I. Monero block miners

will reject transactions whose linkable ring signatures have key images from I.

At the same time, revealing the key image of a one-time address does not leak

information about the latter as long as the DDH problem remains hard in Ed25519.

To see this, let Hp(P) = yG for some unknown y ∈ Z+
l . Then I = xHp(P) = xyG

is the Diffie-Hellman function of P = xG and Hp(P).

2.1.3 Pedersen Commitments to Amounts

In the CryptoNote protocol specification, the number of coins tied to a one-time

address was public. To create a ring signature spending from an address, the spender

could only sample from other addresses containing the same amount.

Chapter II. Background 13

To improve privacy, Monero introduced the use of Pedersen commitments [41] to

hide the number of coins tied to a one-time address. The Pedersen commitment to

an amount a ∈ {0, 1, 2, ..., 264 − 1} is given by

C(y, a) = yG+ aH,

where y ∈ Z+
l is a randomly chosen blinding factor and H ∈ G is a curve point whose

discrete logarithm with respect to the base point G is unknown. Such commitments

are perfectly hiding and computationally binding.

When Alice wants to transfer some of her coins to Bob, she creates a Pedersen

commitment C(a, y) in addition to the one-time address P . Alice includes a′ =

a ⊕ HK(HK(rBvk)) and y′ = y ⊕ HK(rBvk) in the transaction, where ⊕ is bitwise

XOR and HK is the Keccak hash function. Bob can recover a, y from a′, y′ using his

private view key bvk and the random point R in the transaction.

2.1.4 Monero Outputs

The destination of coin transfers in a Monero transaction is called an output. A

transaction can have multiple outputs. Each output is characterized by a pair

(P,C) ∈ G2, where P is a one-time address and C is a Pedersen commitment

to the number of coins stored in the output.

Outputs containing Pedersen commitments are created in a Monero transaction type

called ring confidential transaction (RingCT) [37]. Monero made the RingCT type

of transactions mandatory in September 2017 [32].

Chapter II. Background 14

In our design of MProve-Nova, we only consider RingCT outputs. In case an ex-

change owns a non-RingCT output, they can use a Pedersen commitment with zero

blinding factor, i.e. a commitment of the form C(0, a) = aH, to represent the output.

2.2 Challenges in Designing a Monero PoR Protocol

In this section, we describe the challenges involved in designing Monero PoR proto-

cols. We also describe how previous PoR protocols for Monero address these chal-

lenges and where they fall short. This description will help clarify our contributions

listed in Section 1.2.

Many cryptocurrency protocols (including Bitcoin) have the notion of an unspent

transaction output (UTXO). As the name suggests, this corresponds to an output

having coins that have not been spent by their owner. For such cryptocurrencies,

a PoR protocol can restrict its attention to the UTXO set and ignore all spent

transaction outputs.

Since Monero hides the identity of the spending key in a transaction, one cannot

partition the output set into spent and unspent outputs. While some transaction

graph analysis techniques have been able to categorize a large percentage of non-

RingCT outputs as spent [33, 28], it is not possible to know if any of the RingCT

outputs (except for 5 of them) have been spent [50, 47].

Any Monero PoR protocol must prove two compound statements:

1. The prover knows the private keys corresponding to some outputs on the Mon-

ero blockchain. The sum of the coins in the output commitments will add up

to the reserves owned by the prover.

Chapter II. Background 15

2. The outputs contributing to the prover’s reserves have not been already spent

in a past transaction.

As discussed in the previous section, one cannot simply reveal the prover-owned

outputs as this would violate the privacy of both the prover and other Monero users.

One solution is to give a privacy-preserving proof of membership of prover-owned

outputs in the set of all outputs, together with a proof of knowledge of private keys

for each such output.

But this is not enough. One needs to also give a privacy-preserving proof that

the prover-owned outputs are unspent. Furthermore, one needs to ensure that a

malicious prover does not double count, i.e. it does not artificially inflate its reserves

by counting the coins in an output more than once.

Previous Monero PoR protocols, namely MProve [19] and MProve+ [18], partially

achieved the above goals as follows:

• They both proved that the prover-owned outputs belonged to an anonymity

set, a subset of the set of all outputs that appeared on the Monero blockchain.

For performance reasons, they chose the anonymity set to be much smaller

than the set of all outputs.

• They both revealed one key image per prover-owned output that contributed

to the reserves. This had several implications:

– The verifier could verify that the prover was using only unspent outputs

by checking that the revealed key images had not appeared in any trans-

action on Monero blockchain.

– A malicious prover could not double count, as using an output more than

once in the same PoR would result in a repeated key image.

Chapter II. Background 16

– The verifier could verify that two different provers were not colluding

by checking that the sets of key images revealed by them were non-

overlapping. So the proof of non-collusion was implicitly available in

the original protocol itself.

But these approaches had some drawbacks.

• The proof size and proof verification time in both MProve and MProve+ in-

creased linearly with the size of the anonymity set. Additionally, in MProve+

the memory required for generating and verifying proofs also increased linearly

with the size of the anonymity set.

• More seriously, revealing the key images negatively impacted the privacy of

the prover and, in some cases, the privacy of regular Monero users.

– In MProve, if the prover spent from an address that was used to previously

generate a MProve proof, then the address was immediately identified

as the spending address in the transaction ring. This meant that all

previous transaction rings where this address appeared as a decoy had

their effective ring size reduced by one.

– MProve+ improved upon MProve by breaking the direct link between

the key image and a prover-owned address. If the prover spent from an

address that was used to previously generate a MProve+ proof, then that

address could be identified as the spending address only if the transaction

ring and the anonymity set had exactly one address in common. But the

transaction would always be identified as being initiated by the prover.

Chapter II. Background 17

In this paper, we propose a Monero PoR protocol which does not suffer these draw-

backs, while preventing malicious provers from using spent outputs or double count-

ing unspent outputs.

2.3 Nova

In this section, we cover aspects of the Nova recursive SNARK [27] required to de-

scribe the MProve-Nova protocol. Nova introduced a non-interactive folding scheme

for committed relaxed rank-1 constraint systems (R1CS) [27, Construction 2]. It

consists of two main components: an incrementally verifiable computation (IVC)

[46] scheme and a zkSNARK to prove knowledge of valid IVC proofs.

2.3.1 IVC Scheme

An IVC scheme allows a prover to prove that for some function F and public values

z0 and zn, it knows private inputs w0, w1, . . . , wn−1 such that

zn = F (F (. . . F (F (F (z0, w0) , w1) , w2) , . . .) , wn−1) .

As shown in Fig. 2.1, this is achieved by proving the execution of a series of incre-

mental computations of the form zi+1 = F (zi, wi), for each i ∈ {0, 1, . . . , n − 1},

where zi and zi+1 are the public input and output in the ith step, respectively.

The Nova IVC scheme uses a non-interactive folding scheme for committed relaxed

R1CS. The step function F needs to be expressed using R1CS constraints. At each

step i, the variables zi, zi+1, and wi define the committed relaxed R1CS instance.

Chapter II. Background 18

F F F

w0 wi wn−1

z0 zn· · · · · ·
z1 zi zi+1 zn−1

Figure 2.1: Incrementally Verifiable Computation

This instance is folded into a running committed relaxed R1CS which represents the

correct execution of steps 0, 1, . . . , i− 1.

The IVC prover gives a proof Πi+1 at each step i, which attests that zi+1 = F (zi, wi)

was computed correctly and the folding of the two committed relaxed R1CS instances

is valid. The IVC proof Πi+1 attests to the correct execution of steps 0, 1, . . . , i.

The Nova IVC scheme satisfies completeness and knowledge soundness. For more

details on the Nova IVC scheme, we refer the reader to Section 5 of the Nova paper

[27].

2.3.2 zkSNARK of IVC Proof

After n steps, the IVC prover produces a proof Πn that attests to the correct execu-

tion of steps 0, 1, . . . , n− 1. The IVC prover can send this proof to the verifier, but

this does not satisfy zero-knowledge since the proof Πn does not hide the prover’s

private inputs.

Instead, Nova uses a zero-knowledge SNARK (zkSNARK) to prove knowledge of a

valid IVC proof Πn.

1. The prover Pzk and verifier Vzk of zkSNARK are given the instance (n, z0, zn).

2. The prover Pzk additionally takes the proving key pk and IVC proof Πn to

produce the proof π ← Pzk(pk, (n, z0, zn),Πn).

Chapter II. Background 19

3. The verifier Vzk takes the verification key vk, proof π, and (n, z0, zn) as inputs.

It then either accepts the proof or rejects it.

If the zkSNARK is based on a Pedersen commitment scheme for vectors, then the

proof size is O (log |F |) and the proof verification time is O (|F |). Here |F | is the

number of R1CS constraints needed to express the computation of the step function

F .

Chapter 3

MProve-Nova PoR and the

Non-Collusion Protocol

3.1 Introduction

MProve-Nova requires the specification of a Nova step function F that will prove

ownership of an unspent Monero output (see definition in Section 2.1.4) at each

step and accumulate the coins in the output into a running sum. The necessity of

the different components in F will become apparent when they are mapped to the

requirements of any privacy-preserving Monero PoR protocol. These requirements

are listed below:

R1. An exchange must only use outputs present on the Monero blockchain to con-

tribute to its reserves.

R2. An exchange must only use outputs it owns to contribute to its reserves.

R3. An exchange must not use spent outputs to contribute to its reserves.

21

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 22

R4. An exchange must use each owned output at most once to contribute to its

reserves.

3.2 Merkle Trees

To satisfy these requirements, we require one regular Merkle tree and two indexed

Merkle trees [23]. The latter type of trees were introduced in [45] to generate efficient

non-membership proofs inside a SNARK.

All three trees are constructed using the Poseidon hash function [21] to reduce

the number of R1CS constraints used to express F . Let Hpos : {0, 1}∗ 7→ Fs be

the Poseidon hash function where Fs is the scalar field used to express the R1CS

constraints.

1. Transaction Outputs Tree: The transaction outputs tree (TXOT) is a reg-

ular Merkle tree. Let Hp : G 7→ G be the cryptographic hash function used

to compute the key image of a one-time address P = xG as xHp(P). Let ∥

denote the string concatenation operator.

For a Monero block height bh, let Tbh = {(P1, C1), (P2, C2), . . .} be the set of

all transaction outputs that have appeared in blocks upto height bh. TXOT

is constructed using the leaves {Hpos (P∥C∥Hp(P)) | (P,C) ∈ Tbh}, sorted in

the order of appearance of the one-time addresses (the P ’s) on the blockchain.

We omit the dependence of TXOT on bh for simplicity. The motivation for

choosing this particular leaf structure is described in Section 3.4.2.

2. Key Images Tree: Let Ibh be the set of all key images that have appeared

on the Monero blockchain upto block height bh. The key images tree KIT is an

indexed Merkle tree constructed using the leaves {Hpos(I) | I ∈ Ibh}, sorted

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 23

in the order of appearance of the key images on the blockchain. Once again,

we omit the dependence of KIT on bh for simplicity.

3. Double Spend Tree: While the previous two trees are populated before

the MProve-Nova protocol execution, the double spend tree DST is populated

during the protocol execution. It is an indexed Merkle tree that is used to

prevent the exchange from using an owned output more than once (hence

satisfying requirement R4). The DST is initially empty and is later populated

with leaves of the form Hpos(x∥bh) where x is a private key. Let DSTj−1 and

DSTj denote the state of the double spend tree before and after the jth step,

respectively.

3.3 Step Function Inputs and Outputs

Let n be the number of outputs the exchange will use to contribute to its reserves.

For j = 1, 2, . . . , n, the function F takes the following as public inputs in step j:

(i) The block height bh.

(ii) The root hash of TXOT.

(iii) The root hash of KIT.

(iv) The root hash of DSTj−1, the double spend tree before step j.

(v) A Pedersen commitment Cres
j−1 to the reserves accumulated before step j. Cres

0

is set to G, which commits to the zero amount with blinding factor 1.

The public outputs of F in step j are the same as above, except for two differences.

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 24

(i) The root hash of DSTj−1 is replaced with the root hash of DSTj, the double

spend tree after step j.

(ii) The Pedersen commitment Cres
j−1 is replaced with Cres

j , the reserves accumu-

lated after step j.

F also takes the following as private inputs in step j:

(i) An index ij such that 1 ≤ ij ≤ |Tbh|.

(ii) The private key xij corresponding to the one-time address Pij .

(iii) The values Cij and Hp(Pij) in the preimage of the leaf Hpos

(
Pij∥Cij∥Hp(Pij)

)
of TXOT at index ij.

(iv) A Merkle path of a leaf in TXOT to prove the membership of the leaf Hpos

(
Pij∥Cij∥Hp(Pij)

)
in TXOT.

(v) A second Merkle path of a leaf in KIT to prove the non-membership of the

Poseidon hash of the key image Iij = xijHp(Pij) in the KIT.

(vi) A third Merkle path of a leaf in DSTj−1 to prove the non-membership of the

leaf Hpos(xij∥bh) in DSTj−1.

(vii) A fourth Merkle path in DSTj−1 to aid the insertion of the leaf Hpos(xij∥bh).

(viii) A Pedersen commitment Cres
j−1 to the reserves accumulated before step j.

(ix) A random scalar rj to blind the sum Cres
j−1 + Cij .

3.4 Step Function Computation

For each j ∈ {1, 2, . . . , n}, in step j function F executes the following substeps:

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 25

S1. Using the private input xij , it computes the point Pij = xijG. This computa-

tion proves knowledge of the private key corresponding to Pij .

S2. Using Pij and the private inputs Cij and Hp(Pij), it computes the hash Hpos

(
Pij∥Cij∥Hp(Pij)

)
.

S3. Using the first private Merkle path input, it proves the membership of Hpos(Pij∥Cij∥Hp(Pij))

in TXOT.

S4. Using the private inputs xij and Hp(Pij), it computes the key image Iij =

xijHp(Pij) and its hash Hpos(Iij).

S5. Using the second private Merkle path input, it proves the non-membership of

Hpos(Iij) in KIT.

S6. Using the private input xij , it computes the hash Hpos(xij∥bh).

S7. Using the third private Merkle path input, it proves the non-membership of

Hpos(xij∥bh) in DSTj−1.

S8. Using the fourth private Merkle path input, it inserts Hpos(xij∥bh) into DSTj−1

to obtain the root hash of the new tree state DSTj.

S9. Using the private input rj, it computes the point Crand
j = rjG.

S10. Using the private input Cij , public input Cres
j−1, and Crand

j , it computes the

updated Pedersen commitment Cres
j = Cres

j−1 + Cij + Crand
j .

The public outputs after the nth step contain Cres
n and the root hash of DSTn.

• The exchange will claim that Cres
n is a Pedersen commmitment to its total

reserves. The exchange can generate a range proof on the point Cres
n − tH to

prove that its reserves exceed a threshold t.

• The root hash of DSTn will be used as input to the non-collusion protocol.

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 26

3.4.1 Satisfying Monero PoR requirements

Let us revisit the requirements listed at the beginning of this section.

(i) Steps S2 and S3 prove that Cij is a Pedersen commitment to coins tied to the

one-time address Pij present on the Monero blockchain. Steps S9 and S10 en-

sure that only such Cij ’s contribute to the total reserves of the exchange. Thus

the exchange can only use outputs from the Monero blockchain to contribute

to its reserves (requirement R1).

(ii) Step S1 proves that the exchange knows the private key xij corresponding to

Pij . Thus requirement R2 is satisfied, i.e. the exchange only uses outputs it

owns to contribute to its reserves.

(iii) Steps S4 and S5 prove that the exchange can only use unspent outputs to

contribute to its reserves, thus satisfying requirement R3. If an exchange were

to use a spent output, the corresponding key image would be present in KIT

and the non-membership proof in S5 would fail.

(iv) Steps S6, S7, S8 prove that the coins tied to the one-time address Pij are

used at most once to contribute to the exchange’s reserves, thus satisfying

requirement R4.

• Suppose an exchange attempts to use the same output twice, in steps j1

and j2 where j2 > j1.

• It would have to repeat the private key x to satisfy the membership proof

in step S3.

• The leaf Hpos(x∥bh) would be inserted into the double spend tree in sub-

step S8 of step j1 to get DSTj1 .

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 27

• Then the non-membership proof of Hpos(x∥bh) in DSTj2−1 would fail in

substep S7 of the later step j2.

3.4.2 Motivating the Step Function Structure

In this subsection, we justify our choices for the various data structures and compu-

tations used to specify the step function.

(i) We chose the TXOT to have leaves of the form Hpos

(
Pij∥Cij∥Hp(Pij)

)
. It may

not be clear why we chose to concatenate Cij and Hp(Pij) with Pij .

• The reason for including Cij in the leaf is to enforce a copy constraint.

We want to ensure that only the commitment Cij tied to Pij contributes

to the reserves in step j. It is possible for users to know the amounts and

blinding factors of commitments tied to one-time addresses they do not

own (see Section 2.1.3). We want to avoid situations where commitments

not owned by the exchange are used to generate its reserves.

• The point Hp(Pij) is included in the leaf to reduce the number of R1CS

constraints needed to specify the step function F . If it were not included,

then the exchange would have to calculate the hash of Pij in the step

function. This hash involves the Keccak hash function [7], which requires

a large number of R1CS constraints.

(ii) We chose to insert leaves of the form Hpos(xij∥bh) into the DST to prevent

an exchange from using an owned output more than once. Such behavior

could also be possibly prevented by inserting any one of Hpos(xij), Hpos(Pij)

or Hpos(Pij∥bh) into the DST.

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 28

• The problem with using H(Pij) or Hpos(Pij∥bh) as leaves to the DST is

that an adversary could try combinations of outputs to reconstruct the

set of owned outputs from the public root hash of the DST. This attack

is feasible for small n as the number of outputs on the Monero blockchain

is less than 100 million [50, 47].

• The problem with using H(xij) as leaves to the DST is that the public

root hash of the DST would remain the same if the exchange uses the

same set of outputs to generate its reserves at different block heights.

This leaks information about the asset strategy of the exchange.

(iii) In substep S10 of step j, the Pedersen commitment to the accumulated reserves

Cres
j is blinded using a random point Crand

j . The point Crand
j is chosen to have

the form rjG to ensure that the amount being contributed by Cij is unchanged

(see Section 2.1.3). If this blinding point were not present and the accumulated

reserves were simply calculated as Cres
j = Cres

j−1 +Cij , then an adversary could

try combinations of commitments to reconstruct the set of owned outputs from

the public output Cres
n .

3.5 Protocol for Proving Non-Collusion

To generate a proof of non-collusion, we assume that the values Hpos(xij ||bh) which

were inserted into the DST in step j of the PoR protocol are made public by the

exchange. We argue in Section A.3, that this does not affect the exchange’s privacy.

If all the exchanges were to make the leaves of their respective DSTs public, then

customers can check for non-collusion by checking that these sets are all pairwise

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 29

disjoint. But the customers would need to download all the leaves of the DST and

the time taken to check non-collusion would be proportional to the size of leaf sets.

Instead, we propose a protocol for proving non-collusion between a pair of exchanges

that leverages Nova to achieve constant verification time and reduces the download

requirements to just the root hash of the DST and a constant-sized Nova proof. For

this protocol to work, the exchanges need to generate their respective MProve-Nova

proofs (which contains their DSTs) at the same block height bh.

Suppose two exchanges Ex1 and Ex2, that have generated MProve-Nova proofs of

reserves at the same blockheight bh, want to prove that they have not colluded.

They want to prove that they have not used any common outputs to contribute to

their respective reserves.

(i) Let n1 and n2 be the number of owned outputs of Ex1 and Ex2, respectively.

(ii) Let DSTEx1
n1

and DSTEx2
n2

be the double spend trees obtained by the exchanges

at the end of their MProve-Nova proof procedures.

(iii) Let v(1)1 , v
(1)
2 , . . . , v

(1)
n1 be the leaves of DSTEx1

n1
and v

(2)
1 , v

(2)
2 , . . . , v

(2)
n2 be the leaves

of DSTEx2
n2

.

(iv) Note that v
(1)
j = Hpos

(
x
(1)
j ∥bh

)
for j = 1, 2, . . . , n1 and v

(2)
j = Hpos

(
x
(2)
j ∥bh

)
for j = 1, 2, . . . , n2, where the x

(1)
j s and x

(2)
j s are the private keys owned by

Ex1 and Ex2, respectively.

The non-collusion protocol requires an indexed Merkle tree called the output inclu-

sion tree OIT that serves a purpose similar to the double spend tree DST in the

proof of reserves protocol. The OIT is initially empty and is later populated with

leaves of the DST of one of the exchanges. Let OITj−1 and OITj denote the state of

the output inclusion tree before and after the jth step, respectively.

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 30

3.5.1 Step Function Inputs and Outputs

Ex2 will share the leaves v
(2)
1 , v

(2)
2 , . . . , v

(2)
n2 of its double spend tree with Ex1. The

Nova step function Fnc for the non-collusion protocol will be run by Ex1 for n1

steps. It takes the following as public inputs in step j:

(i) The root hashes of the double spend trees DSTEx1
n1

and DSTEx2
n2

.

(ii) The root hash of OITj−1, the output inclusion tree before step j.

The public outputs of Fnc in step j are the following:

(i) The root hashes of the double spend trees DSTEx1
n1

and DSTEx2
n2

.

(ii) The root hash of OITj, the output inclusion tree after step j.

The step function Fnc also takes the following as private inputs in step j:

(i) A Merkle path to prove the membership of the leaf v(1)j in DSTEx1
n1

.

(ii) A second Merkle path to prove non-membership of v(1)j in DSTEx2
n2

.

(iii) A third Merkle path to prove the non-membership of the leaf v(1)j in OITj−1.

(iv) A fourth Merkle path in OITj−1 to aid the insertion of the leaf v(1)j into it.

3.5.2 Step Function Computation

For j ∈ {1, .., n1}, in step j, function Fnc executes the following substeps:

S1. Using the first private Merkle path input, it proves the membership of v(1)j in

DSTEx1
n1

.

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 31

S2. Using the second private Merkle path input, it proves the non-membership of

v
(1)
j in DSTEx2

n2
.

S3. Using the third private Merkle path input, it proves the non-membership of

v
(1)
j in OITj−1.

S4. Using the fourth private Merkle path input, it inserts v(1)j into OITj−1 to obtain

the root hash of the new tree state OITj.

After step n1, the root hash of OITn1 will equal the root hash of DSTEx1
n1

.

3.5.3 Motivating the Step Function Structure

The motivation for the different substeps in Fnc is as follows:

(i) Steps S1 and S2 prove that an output used by Ex1 is not used by Ex2.

(ii) Steps S3 and S4 prove that the output v
(1)
j is distinct from v

(1)
1 , v

(1)
2 , . . . , v

(1)
j−1.

3.6 Security Properties of MProve-Nova

The MProve-Nova PoR protocol has the following security properties:

1. Inflation Resistance: The inflation resistance property requires that a compu-

tationally bounded exchange cannot create a commitment to an amount which

is greater than its total reserves.

2. Exchange Privacy : The exchange privacy property prevents a computation-

ally bounded adversary from identifying the Monero outputs belonging to the

Chapter III. MProve-Nova PoR and the Non-Collusion Protocol 32

exchange. Only an upper bound on the number of outputs owned by the

exchange is revealed.

3. Collusion Resistant : The output of the MProve-Nova PoR can be used as input

to a protocol for proving non-collusion. The latter protocol cannot be violated

by computationally bounded exchanges, provided that they both generated

their proofs of reserves at the same block height.

These security properties and their proofs are further discussed in Appendix A.

Chapter 4

Implementation and Performance

4.1 Implementation

We have implemented the MProve-Nova PoR protocol and the protocol for proving

non-collusion using the reference implementation of Nova [38]. The implementation

uses Pasta curves [40], a 2-cycle of elliptic curves and the Posiedon hash function

[21, 34]. A detailed explanation of Nova using 2-cycle of elliptic curves and a security

fix in the implementation was given by Nguyen et al. [35]. The Nova implementation

[38] accepts the step computation F , as a bellpepper gadget [6]. The bellpepper

gadgets required to implement MProve-Nova were described in Section 1.2.

4.2 Performance

In this section, we present the performance of the MProve-Nova PoR protocols. All

simulations were run on a 64-core 2.30GHz Intel Xeon Gold 6314U CPU with access

to 125GB RAM. Table 4.1 shows comparison between MProve-Nova, MProve+,

33

Chapter IV. Implementation and Performance 34

Table 4.1: Performance comparison of PoR protocols. n = |Pown|, PT denotes
proving time, VT denotes verification time and PS denotes proof size with units
in parentheses. Values with a * are estimated values due to simulation running

out of memory

MProve-Nova MProve+ MProve
n PT(Hrs) VT(s) PS(KB) PT(Hrs) VT(s) PS(KB) PT(s) VT(s) PS(MB)

500 0.39 2.18 11.87 1.24 472.98 82.56 100.37 17.33 37.44
1,000 0.77 2.18 11.87 2.49 959.05 162.62 99.32 17.36 37.44
3,000 2.36 2.18 11.88 7.46* 2887.539* 482.8* 100.19 17.33 37.44
7,000 5.57 2.17 11.87 17.41* 6746.339* 1123.2* 100.27 17.48 37.44
10,000 8.12 2.19 11.88 24.88* 9640.439* 1603.5* 100.19 17.34 37.44
15,000 12.88 2.19 11.88 37.32* 14463.939* 2404* 100.39 17.35 37.44
20,000 17.71 2.16 11.88 49.76* 19287.439* 3204.5* 100.36 17.33 37.44

and MProve for PoR generation/verification. The open source implementations of

MProve+ [2] and MProve [3] were used to perform the simulations. Our implemen-

tation of MProve-Nova is available on anonymous Github [22].

The computation times and proof sizes of MProve+ and MProve increase linearly

in the size of the anonymity set. All simulations for MProve+ and MProve were

run for an anonymity set of 45,000 one-time addresses, whereas for MProve-Nova

the anonymity set is the set of all one-time addresses on the Monero blockchain.

Thus the comparison is unfair towards MProve-Nova since for an anonymity set of

all the one-time addresses, MProve+ and MProve will be impractical. However,

despite this, MProve-Nova gives practical results and performs better in terms of

verification times and proof sizes.

For MProve-Nova, the proving time is linear in the number of owned one-time ad-

dresses, while the proof verification times and proof sizes are constant. The proving

time for 10,000 owned addresses is about 8 hours and the proving time for 20,000

owned addresses is about 17 hours. The verification time and proof size are constant

at about 2.19 s and 12KB, respectively. The performance results are practical since

an exchange with up to 10,000 owned addresses can generate proofs every 12 Hrs

Chapter IV. Implementation and Performance 35

Table 4.2: Performance of Proof of Non-Collusion. n1 denotes the number of
values inserted by exchange Ex1 in its double spend tree DSTEx1

n1 Proving Time Verification Time Proof Size
1,000 406.89 s 192.75 ms 10 KB
3,000 1286.62 s 191.95 ms 10 KB
7,000 3532.81 s 193.66 ms 10 KB
10,000 5710.47 s 197.25 ms 10 KB
15,000 9749.02 s 191.93 ms 10 KB
20,000 14947.25 s 181.86 ms 10 KB

and an exchange with up to 20,000 owned addresses can generate proofs every 24

Hrs.

MProve-Nova has smaller proof sizes and faster verification time as compared to

both MProve+ and MProve. MProve-Nova has higher proving time compared to

MProve but it provides better privacy to the exchange which is not the case with

MProve.

Table 4.2 shows the performance of the non-collusion protocol. In all cases, the

proof size is 10 KB and proof verification time is about 190 ms.

Chapter 5

Conclusion

5.1 Summary

We described MProve-Nova, the first privacy-preserving proof of reserves for Mon-

ero which also enables proofs of non-collusion between exchanges. We compared

MProve-Nova with MProve+ and MProve to show that our protocol has practical

computation times and proof size along with better privacy.

For MProve-Nova, the proving time for 10,000 owned addresses is about 8 hours. It

achieves verification times of about 2 seconds and proof sizes of 12KB, irrespective

of the size of the anonymity set. Our goal with the performance evaluation is to

provide an upperbound on the computation times since they can be further reduced

using GPU acceleration or using non-uniform IVC schemes like SuperNova [26].

37

Appendix A

Security Properties

A.1 Introduction

In this section, we discuss the security properties of the MProve-Nova and non-

collusion protocols. We model computationally bounded entities as probabilistic

polynomial-time (PPT) algorithms.

A.2 Inflation Resistance

The inflation resistance property prevents a PPT exchange from creating a commit-

ment to an amount which is greater than its total reserves. At each step j of the

protocol, the exchange is allowed to accumulate the commitment Cij into the total

commitment Cres
j if and only if

(i) it knows the private key corresponding to Pij ,

(ii) the output corresponding to (Pij , Cij) is unspent, and

39

Appendix A. Security Properties 40

(iii) the output corresponding to (Pij , Cij) has not been used by the exchange

before.

These properties are enforced by the circuit of Nova step computation described in

Section 3.

Suppose an exchange executes the MProve-Nova protocol for n steps where it uses

the output (Pij , Cij) in the jth step. Let aj be the amount committed by Cij . The

following theorem shows that a PPT exchange can only use MProve-Nova to output

a commitment to an amount which is a sum of the reserves it owns.

Theorem A.1. Suppose an exchange can create a MProve-Nova proof of reserves

with final commitment Cres
n = C(y, a) such that

(i) it knows the blinding factor y ∈ Z+
l and an amount a ∈ {0, 1, . . . , 264 − 1}

(ii) the amount a is not of the form
∑n

j=1 aj and

(iii) the proof is accepted by the MProve-Nova verifier.

Then the exchange can calculate the discrete logarithm of H with respect to G with

overwhelming probability.

Proof. As per the Nova step computation described in Section 3.3,

Cres
n = Cres

0 +
n∑

j=1

(
Cij + Crand

j

)
= G+

n∑
j=1

(
yijG+ ajH + rjG

)
,

Appendix A. Security Properties 41

where yij is the blinding factor in Cij . Now substitute Cres
n = C(y, a) = yG+ aH

yG+ aH = G+
n∑

j=1

(
yijG+ ajH + rjG

)
(
a−

n∑
j=1

aj

)
H =

(
1− y +

n∑
j=1

yj + rj

)
G

The exchange can calculate the discrete logarithm of H with respect to G as

(
a−

n∑
j=1

aj

)−1(
1− y +

n∑
j=1

yj + rj

)

The multiplicative inverse of
(
a−

∑n
j=1 aj

)
exists because it is a non-zero element

in the prime field Fl. This follows from the assumption that a ̸=
∑n

j=1 aj.

A.3 Exchange Privacy

We will separately describe exchange privacy for the MProve-Nova PoR protocol

and the non-collusion protocol.

A.3.1 Proof of Reserves

The exchange privacy property prevents a PPT adversary from identifying the Mon-

ero outputs which the exchange used to generate the proof of reserves. In the PoR

protocol, the exchange produces an IVC proof Πn that attests to the correct execu-

tion of steps 1, ..., n. Then the exchange uses the prover Pzk to produce a proof π

to show that it knows a valid IVC proof Πn for the statement (n, z0, zn), where z0

is the initial public input and zn is the public output after the nth step. The proof

π is submitted to the verifier or customer along with the statement (n, z0, zn). As

Appendix A. Security Properties 42

described in Section 2.3, the proof π is zero-knowledge and it reveals nothing about

the exchange’s private inputs to the protocol.

The verifier or customer is also provided with the statement (n, z0, zn). The proof

of reserves protocol does reveal the number of one-time addresses owned by the

exchange as the total number of steps n. But as mentioned earlier, the exchange

can generate dummy one-time addresses with commitments to zero amount and use

them in the protocol along with their actual asset-bearing one-time addresses. This

will obfuscate the total number of actual one-time addresses owned by the exchange.

The initial input z0 is independent of the exchange’s private inputs and thus reveals

nothing about the exchange’s private inputs. The final output of the protocol zn

depends on the exchange’s private inputs as

zn = F (F (. . . F (F (F (z0, w0) , w1) , w2) , . . .) , wn−1) .

We need to show that the output zn does not reveal any information about the

exchange’s private input.

We consider the scenario when an exchange publishes f(λ) number of PoR outputs,

where f(λ) denotes a polynomial of the security parameter λ. Each of the PoR

outputs can be for different number of Monero outputs owned by the exchange.

Let us denote the number of steps in kth output by nk and the corresponding

output of the protocol by znk
. We denote the f(λ) outputs of the protocol as

Zactual = {znk
| k = 1, . . . , f(λ)}.

All the f(λ) actual outputs of the protocol correspond to a different block heights bh

of the Monero blockchain. If the exchange uses the same block height for different

outputs then the set of private keys used to generate proof of reserves should not be

same.

Appendix A. Security Properties 43

We want to show that Zactual does not reveal any information of the exchange’s

private inputs. For this, the exchange constructs simulated outputs. For the kth

actual output znk
= [bhk, KITk.root, TXOTk.root, DSTk.root, C

res
nk

], the simulated

output ẑnk
is constructed as follows.

• The block height bhk, key image tree root KITk.root and TXOTk.root are set

to be same as in znk
, since they are public data available on the Monero

blockchain.

• The exchange samples nk number of uniformly random private keys from Z+
l

and constructs a double spend tree D̂ST with values (xk, bhk) where k =

1, ..., nk. The exchange samples a uniformly random element r from Z+
l and

sets Ĉresk = rG. The kth simulated output is

ẑnk
= [bhk, KITk.root, TXOTk.root, D̂STk.root, Ĉ

res
nk

].

• The exchange sets Zsim = {ẑnk
| k = 1, . . . , f(λ)}.

If there exists no PPT adversary A that can distinguish between Zactual and Zsim

except with a negligible probability of success, then we say Zactual does not reveal

any information about the exchange. We define the privacy experiment PORPriv as

follows.

1. The exchange sets Z0 = Zsim and Z1 = Zactual.

2. The exchange chooses a bit b uniformly from {0, 1}.

3. The exchange sends Zb to A

4. A outputs a bit b′ = A(Zb).

Appendix A. Security Properties 44

5. A succeeds if b′ = b. Otherwise, it fails.

Definition A.2. A proof of reserves protocol is said to provide exchange privacy

if for every PPT adversary A in the PORPriv experiment, there exists a negligible

function negl(λ) of the security parameter λ such that,

Pr[b′ = b] ≤ 1

2
+ negl(λ).

Theorem A.3. The MProve-Nova proof of reserves protocol provides exchange pri-

vacy in the random oracle model.

Proof. We need to show that A cannot distinguish between Z0 and Z1 with a prob-

ability that is significantly greater than that of random guessing.

The outputs in Z0 and Z1 have the elements

(bhk, KITk.root, TXOTk.root)
f(λ)
k=1

common between them. In addition to these elements, the simulated outputs in Z0

have

(D̂STk.root, Ĉ
res
nk

)
f(λ)
k=1

and the actual outputs in Z1 have

(DSTk.root, C
res
nk

)
f(λ)
k=1 .

Consider the kth simulated commitment, Ĉres
nk

= rG. Since r is uniformly random

element from Zl, Ĉres
nk

is uniformly distributed over G. Consider the kth actual

commitment Cres
nk

. Since a uniformly random blinding factor is added to the actual

reserve commitment at each step of the computation, Cres
nk

is uniformly distributed

Appendix A. Security Properties 45

over G. Thus both Ĉres
nk

and Cres
nk

are uniformly distributed over G for all k ∈

{1, 2, ..., f(λ)}.

Consider the kth simulated and actual DST roots D̂STk.root and DSTk.root, respec-

tively. Both the roots are outputs of Poseidon hash Hpos. As Hpos is modeled as

random oracle and assuming the private keys are generated uniformly at random,

both D̂STk.root and DSTk.root are uniformly distributed.

Now suppose an exchange generates two actual outputs znl
, znm ∈ Z1, for the same

blockheight bh and the same set of private keys. Then the DST roots in znl
and znm

will be same. Since two outputs in Z1 will have the same DST roots, adversary A

can distinguish between Z0 and Z1. This case is eliminated with a restriction on the

generation of the actual outputs. The exchange has to generate each actual output

for a different blockheight. If the exchange chooses to generate the outputs at the

same blockheight, then the set of private keys which the exchange uses to generate

the output should not be the same. This restriction ensures that no two outputs in

Z1 have the same DST root.

The above arguments show that Z0 and Z1 are computationally indistinguishable

from each other and a PPT adversary A cannot distinguish between them with a

probability that is significantly greater than that of random guessing.

A.3.2 Proof of Non-collusion

Suppose two exchanges Ex1 and Ex2 have generated the proof of reserves for the same

blockheight bh and Ex1 wants to prove non-collusion with Ex2. Ex2 has already made

the values vj = Hpos(x
(2)
j ||bh) which were inserted in its DSTEx2 publicly available.

Appendix A. Security Properties 46

As discussed before, the non-collusion protocol does use publicly available data and

any user can check non-collusion. But we proposed a protocol based on Nova for

faster verification of non-collusion. Thus the protocol has no effect on the privacy of

the exchange proving non-collusion i.e. Ex1. But Ex2 has to reveal the values (vj)
n
j=1

to the public. In this section, we will argue that this has no effect on the privacy of

Ex2.

We consider the scenario when an exchange generates f(λ) number of proofs of

reserves, where f(λ) denotes a polynomial of the security parameter λ. Suppose for

each proof of reserves, the exchange inserted a polynomial g(λ) number of values in

the DST. Thus all the values released publicly by the exchange for proof of non-

collusion will be upper bounded by a polynomial h(λ) = f(λ) ∗ g(λ). Let us collect

all these values in a vector Vactual = (vj)
h(λ)
j=1 .

We want to show that Vactual does not reveal any information about the exchange.

All the values in Vactual are Poseidon hashes and map to a finite field Fq, i.e. vj ∈ Fq

for all j ∈ {1, 2, ..., h(λ)}.

The exchange generates a vector with simulated values Vsim = (v̂j)
h(λ)
j=1 such that

v̂j
$←− Fq, where $←− denotes uniform random sampling. If there exists no PPT

adversary A that can distinguish between Vactual and Vsim except with a negligible

probability of success, then we say Vactual does not reveal any information about the

exchange. Now similar to PORPriv experiment we define PNCPriv experiment as

follows.

1. The exchange sets V0 = Vsim and V1 = Vactual.

2. The exchange chooses a bit b uniformly from {0, 1}.

3. The exchange sends Vb to A

Appendix A. Security Properties 47

4. A outputs a bit b′ = A(Vb).

5. A succeeds if b′ = b. Otherwise, it fails.

Definition A.4. Vactual does not reveal any information about the exchange if for

every PPT adversary A in the PNCPriv experiment, there exists a negligible function

negl(λ) of the security parameter λ such that,

Pr[b′ = b] ≤ 1

2
+ negl(λ).

Theorem A.5. Vactual reveals no information about the exchange in the random

oracle model.

Proof. We need to show that A cannot distinguish between V0 and V1 with a prob-

ability that us non-negligibly greater than that of random guessing.

We know that all the f(λ) proof of reserves correspond to a different blockheight

of the Monero blockchain. If the exchange uses the same blockheight for different

outputs then the set of private keys used to generate proof of reserves should not be

same. Thus either xj or blockheight bh corresponding to each vj ∈ V1 is different.

Thus no two values in V1 are identical.

As Hpos is modeled as random oracle, vj is uniformly distributed. Thus each vj is

indistinguishable from a uniformly random elements of Fq, i.e. elements of V0. Also

since no two values in V1 are same, V1 is computationally indistinguishable from V0.

Thus a PPT adversary A cannot distinguish between them with a probability that

is non-negligibly greater than that of random guessing.

Appendix A. Security Properties 48

A.4 Collusion Resistance

The collusion resistance property prevents two exchanges from colluding to gener-

ate the proof of reserves. This property follows from the construction of our non-

collusion protocol. The protocol guarantees to detect collusion provided that the

two exchanges giving the proof of non-collusion have generated the proof of reserves

at the same blockheight.

References

[1] Amsden, Z., et al.: The Libra Blockchain, https:

//diem-developers-components.netlify.app/papers/

the-diem-blockchain/2020-05-26.pdf

[2] Bagad, S.: Implementation of MProve+, https://github.com/suyash67/

MProvePlus-Ristretto

[3] Bagad, S.: Implementation of MProve, https://github.com/suyash67/

MProve-Ristretto

[4] Baldimtsi, F., Chatzigiannis, P., Gordon, S., Le, P., McVicker, D.: gOTzilla: Ef-

ficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Appli-

cation to Proofs of Assets in Cryptocurrencies. Proceedings on Privacy Enhanc-

ing Technologies 2022, 229–249 (10 2022). https://doi.org/10.56553/popets-

2022-0107

[5] bellman : Rust Library for R1CS circuits, https://github.com/zkcrypto/

bellman

[6] bellpepper : Rust Library for R1CS circuits, https://github.com/lurk-lab/

bellpepper

49

https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProve-Ristretto
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://github.com/lurk-lab/bellpepper
https://github.com/lurk-lab/bellpepper

References 50

[7] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.:

The making of KECCAK. Cryptologia 38(1), 26–60 (2014).

https://doi.org/10.1080/01611194.2013.856818

[8] Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: ConsenSys/gnark:

v0.7.0 (March 2022). https://doi.org/10.5281/zenodo.5819104

[9] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-

proofs: Short Proofs for Confidential Transactions and More. In: 2018 IEEE

Symposium on Security and Privacy (IEEE S&P). pp. 315–334 (May 2018).

https://doi.org/10.1109/SP.2018.00020

[10] The Complete List of Crypto Exchange Hacks - ChainSec — chainsec.io, https:

//chainsec.io/exchange-hacks/

[11] Chalkias, K., Chatzigiannis, P., Ji, Y.: Broken Proofs of Solvency in Blockchain

Custodial Wallets and Exchanges. Cryptology ePrint Archive, Paper 2022/043

(2022), https://eprint.iacr.org/2022/043

[12] Chalkias, K., Lewi, K., Mohassel, P., Nikolaenko, V.: Distributed Auditing

Proofs of Liabilities. Cryptology ePrint Archive, Paper 2020/468 (2020), https:

//eprint.iacr.org/2020/468

[13] Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and Account-

ability in Distributed Payment Systems. Cryptology ePrint Archive, Paper

2021/239 (2021), https://eprint.iacr.org/2021/239

[14] Chatzigiannis, P., Chalkias, K.: Proof of Assets in the Diem Blockchain. In:

Applied Cryptography and Network Security Workshops: ACNS 2021 Satel-

lite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT,

and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings. p. 27–41.

https://chainsec.io/exchange-hacks/
https://chainsec.io/exchange-hacks/
https://eprint.iacr.org/2022/043
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2021/239

References 51

Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-030-

81645-2_3

[15] circom-ecdsa: Implementation of ECDSA operations in circom, https://

github.com/0xPARC/circom-ecdsa

[16] Circom circuit compiler, https://github.com/iden3/circom

[17] Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: Privacy-

Preserving Proofs of Solvency for Bitcoin Exchanges. In: Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security.

p. 720–731. CCS ’15, Association for Computing Machinery, New York, NY,

USA (2015). https://doi.org/10.1145/2810103.2813674

[18] Dutta, A., Bagad, S., Vijayakumaran, S.: MProve+: Privacy En-

hancing Proof of Reserves Protocol for Monero. IEEE Transac-

tions on Information Forensics and Security 16, 3900–3915 (2021).

https://doi.org/10.1109/TIFS.2021.3088035

[19] Dutta, A., Vijayakumaran, S.: MProve: A Proof of Reserves Pro-

tocol for Monero Exchanges. In: 2019 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW). pp. 330–339 (2019).

https://doi.org/10.1109/EuroSPW.2019.00043

[20] Implementation of gnark emulated package, https://github.com/Consensys/

gnark/tree/master/std/math/emulated

[21] Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.:

Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. In:

30th USENIX Security Symposium (USENIX Security 21). pp. 519–535.

https://github.com/0xPARC/circom-ecdsa
https://github.com/0xPARC/circom-ecdsa
https://github.com/iden3/circom
https://github.com/Consensys/gnark/tree/master/std/math/emulated
https://github.com/Consensys/gnark/tree/master/std/math/emulated

References 52

USENIX Association (Aug 2021), https://www.usenix.org/conference/

usenixsecurity21/presentation/grassi

[22] Implementation of MProve-Nova, https://anonymous.4open.science/r/

5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md

[23] Indexed Merkle Tree, https://docs.aztec.network/aztec/protocol/

trees/indexed-merkle-tree

[24] Ji, Y., Chalkias, K.: Generalized Proof of Liabilities. In: Proceedings of the

2021 ACM SIGSAC Conference on Computer and Communications Security.

p. 3465–3486. CCS ’21, Association for Computing Machinery, New York, NY,

USA (2021). https://doi.org/10.1145/3460120.3484802

[25] Koe, Alonso, K.M., Noether, S.: Zero to Monero: Second Edition (April 2020),

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

[26] Kothapalli, A., Setty, S.: SuperNova: Proving universal machine executions

without universal circuits. Cryptology ePrint Archive, Paper 2022/1758 (2022),

https://eprint.iacr.org/2022/1758

[27] Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Argu-

ments from Folding Schemes. In: Advances in Cryptology – CRYPTO 2022:

42nd Annual International Cryptology Conference, CRYPTO 2022, Santa

Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV. p. 359–388.

Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-

15985-5_13

https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://anonymous.4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md
https://anonymous.4open.science/r/5t384rtcbf57fkbvksdncoir893457022f674r3658h32y8cxny87/README.md
https://docs.aztec.network/aztec/protocol/trees/indexed-merkle-tree
https://docs.aztec.network/aztec/protocol/trees/indexed-merkle-tree
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://eprint.iacr.org/2022/1758

References 53

[28] Kumar, A., Fischer, C., Tople, S., Saxena, P.: A Traceability Analysis of Mon-

ero’s Blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Com-

puter Security – ESORICS 2017. pp. 153–173. Springer International Publish-

ing, Cham (2017), https://doi.org/10.1007/978-3-319-66399-9_9

[29] Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang,

J.: Omniring: Scaling Private Payments Without Trusted Setup. In: Proceed-

ings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security. p. 31–48. CCS ’19, Association for Computing Machinery, New York,

NY, USA (2019). https://doi.org/10.1145/3319535.3345655

[30] Liu, J.K., Wei, V.K., Wong, D.S.: Linkable Spontaneous Anonymous Group

Signature for Ad Hoc Groups. In: Wang, H., Pieprzyk, J., Varadharajan, V.

(eds.) Information Security and Privacy. pp. 325–335. Springer Berlin Heidel-

berg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28

[31] The Monero Project, https://www.getmonero.org/

[32] Monero Scheduled Software Upgrades (2020), https://github.com/

monero-project/monero/#scheduled-software-upgrades, Last Accessed:

August 13, 2023

[33] Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan,

K., Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An Empirical Analy-

sis of Traceability in the Monero Blockchain. Proceedings on Privacy Enhancing

Technologies 2018(3), 143–163 (2018). https://doi.org/10.1515/popets-2018-

0025

[34] neptune : Implementation of the Poseidon hash function, https://github.

com/lurk-lab/neptune

https://doi.org/10.1007/978-3-319-66399-9_9
https://www.getmonero.org/
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/neptune

References 54

[35] Nguyen, W., Boneh, D., Setty, S.: Revisiting the Nova Proof System on a

Cycle of Curves. Cryptology ePrint Archive, Paper 2023/969 (2023), https:

//eprint.iacr.org/2023/969

[36] Stoffu Noether: Reserve Proof Pull Request (2018), https://github.com/

monero-project/monero/pull/3027

[37] Noether, S., Mackenzie, A., Lab, T.: Ring Confidential Transactions. Ledger 1,

1–18 (12 2016). https://doi.org/10.5195/LEDGER.2016.34

[38] Nova Implementation, https://github.com/microsoft/Nova

[39] Nova Scotia: Middleware to compile circom circuits to Nova prover, https:

//github.com/nalinbhardwaj/Nova-Scotia

[40] Pasta curves, https://github.com/zcash/pasta

[41] Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable

Secret Sharing. In: Advances in Cryptology — CRYPTO ’91. pp. 129–140.

Springer (1992). https://doi.org/10.1007/3-540-46766-1_9

[42] Proof-of-Reserves tool for Bitcoin, https://github.com/ElementsProject/

reserves

[43] Steven Roose: Standardizing Bitcoin Proof of Reserves (Feb 2019), https://

blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/

[44] van Saberhagen, N.: Cryptonote v 2.0 (2013), https://bytecoin.org/old/

whitepaper.pdf

https://eprint.iacr.org/2023/969
https://eprint.iacr.org/2023/969
https://github.com/monero-project/monero/pull/3027
https://github.com/monero-project/monero/pull/3027
https://github.com/microsoft/Nova
https://github.com/nalinbhardwaj/Nova-Scotia
https://github.com/nalinbhardwaj/Nova-Scotia
https://github.com/zcash/pasta
https://github.com/ElementsProject/reserves
https://github.com/ElementsProject/reserves
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf

References 55

[45] Tzialla, I., Kothapalli, A., Parno, B., Setty, S.: Transparency Dic-

tionaries with Succinct Proofs of Correct Operation. ISOC Confer-

ence on Network and Distributed System Security (NDSS) (2022).

https://doi.org/10.14722/ndss.2022.23143

[46] Valiant, P.: Incrementally Verifiable Computation or Proofs of Knowledge Im-

ply Time/Space Efficiency. In: Proceedings of the 5th Conference on Theory

of Cryptography. p. 1–18. TCC’08, Springer-Verlag, Berlin, Heidelberg (2008).

https://doi.org/10.1007/978-3-540-78524-8_1

[47] Vijayakumaran, S.: Analysis of CryptoNote transaction graphs using

the Dulmage-Mendelsohn decomposition. Cryptology ePrint Archive, Paper

2021/760 (2021), https://eprint.iacr.org/2021/760

[48] Wikipedia: FTX — Wikipedia, the free encyclopedia (2023), https://en.

wikipedia.org/wiki/FTX

[49] Wikipedia: Mt. Gox — Wikipedia, the free encyclopedia (2023), https://en.

wikipedia.org/wiki/Mt._Gox

[50] Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New Empirical

Traceability Analysis of CryptoNote-Style Blockchains. In: Financial Cryptog-

raphy and Data Security. pp. 133–149 (2019). https://doi.org/10.1007/978-3-

030-32101-7_9

https://eprint.iacr.org/2021/760
https://en.wikipedia.org/wiki/FTX
https://en.wikipedia.org/wiki/FTX
https://en.wikipedia.org/wiki/Mt._Gox
https://en.wikipedia.org/wiki/Mt._Gox

	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Our Contributions
	1.3 Related Work
	1.4 Report Organization

	2 Background
	2.1 Overview of Monero
	2.1.1 One-Time Addresses
	2.1.2 Linkable Ring Signatures
	2.1.3 Pedersen Commitments to Amounts
	2.1.4 Monero Outputs

	2.2 Challenges in Designing a Monero PoR Protocol
	2.3 Nova
	2.3.1 IVC Scheme
	2.3.2 zkSNARK of IVC Proof

	3 MProve-Nova PoR and the Non-Collusion Protocol
	3.1 Introduction
	3.2 Merkle Trees
	3.3 Step Function Inputs and Outputs
	3.4 Step Function Computation
	3.4.1 Satisfying Monero PoR requirements
	3.4.2 Motivating the Step Function Structure

	3.5 Protocol for Proving Non-Collusion
	3.5.1 Step Function Inputs and Outputs
	3.5.2 Step Function Computation
	3.5.3 Motivating the Step Function Structure

	3.6 Security Properties of MProve-Nova

	4 Implementation and Performance
	4.1 Implementation
	4.2 Performance

	5 Conclusion
	5.1 Summary

	A Security Properties
	A.1 Introduction
	A.2 Inflation Resistance
	A.3 Exchange Privacy
	A.3.1 Proof of Reserves
	A.3.2 Proof of Non-collusion

	A.4 Collusion Resistance

	Bibliography

